OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 28 — Oct. 1, 1996
  • pp: 5545–5552

Optical inhomogeneity and microstructure of ZrO2 thin films prepared by ion-assisted deposition

Hyun Ju Cho and Chang Kwon Hwangbo  »View Author Affiliations


Applied Optics, Vol. 35, Issue 28, pp. 5545-5552 (1996)
http://dx.doi.org/10.1364/AO.35.005545


View Full Text Article

Enhanced HTML    Acrobat PDF (2029 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The index inhomogeneity and the microstructure of ZrO2 films prepared by Ar-ion-assisted deposition are investigated. The results show that as the Ar-ion momentum transferred to the growing film increases, the average refractive index increases, the vacuum-to-air spectral shift becomes almost zero, the sign of relative inhomogeneity transits from negative to positive, and the void fraction of the top layer next to air becomes smaller than that of the bottom one. These optical properties result from the improved packing density and denser outer region next to air. The Ar-ion bombardment also induces the changes in microstructure of ZrO2 films, such as the preferential (111) orientation of cubic phase, increase in compressive stress, and reduction of surface roughness.

© 1996 Optical Society of America

History
Original Manuscript: November 16, 1995
Revised Manuscript: March 18, 1996
Published: October 1, 1996

Citation
Hyun Ju Cho and Chang Kwon Hwangbo, "Optical inhomogeneity and microstructure of ZrO2 thin films prepared by ion-assisted deposition," Appl. Opt. 35, 5545-5552 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-28-5545


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. H. Guenther, “Microstructure of vapor-deposited optical coatings,” Appl. Opt. 23, 3806–3916 (1984). [CrossRef] [PubMed]
  2. H. K. Pulker, Coatings on Glasses (Elsevier, Amsterdam, 1984), Chap. 8, pp. 322–331.
  3. J. R. Gee, L. J. Hodgkinson, H. A. Macleod, “Moisture-dependent anisotropic effects in optical coatings,” Appl. Opt. 24, 3188–3192 (1985). [CrossRef] [PubMed]
  4. E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci. Technol. A 11, 580–587 (1993). [CrossRef]
  5. R. E. Klinger, C. K. Carniglia, “Optical and crystalline inhomogeneity in evaporated zirconia films,” Appl. Opt. 24, 3184–3187 (1985). [CrossRef] [PubMed]
  6. M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979). [CrossRef]
  7. T. Allen, “Properties of ion assisted deposited silica and titania films,” in Optical Thin Films, R. I. Seddon, ed., Proc. SPIE325, 93–100 (1982).
  8. P. J. Martin, “Ion-based methods for optical thin film deposition,” J. Mat. Sci. 21, 1–25 (1986). [CrossRef]
  9. P. J. Martin, R. P. Netterfiled, “Ion assisted Dielectric and optical coatings,” in Handbook of Ion Beam Processing Technology, J. J. Cuomo, S. M. Rossnagel, H. R. Kaufman, eds. (Noyes, Park Ridge, N.J., 1989), Chap. 19, pp. 373–414.
  10. K. H. Mueller, “Model for ion-assisted thin-film densification,” J. Appl. Phys. 59, 2803–2907 (1986). [CrossRef]
  11. J. D. Targove, H. A. Macleod, “Verification of momentum transfer as the dominant densifying mechanism in ion assisted deposition,” Appl. Opt. 27, 3779–3781 (1988). [CrossRef] [PubMed]
  12. C. K. Hwangbo, L. J. Lingg, J. P. Lehan, H. A. Macleod, J. L. Makous, S. Y. Kim, “Ion assisted deposition of thermally evaporated Ag and Al films,” Appl. Opt. 28, 2769–2778 (1989). [CrossRef] [PubMed]
  13. H. Windischmann, “Intrinsic stress in sputtered thin films,” J. Vac. Sci. Technol. A 9, 2431–2436 (1991). [CrossRef]
  14. J. P. Lehan, Y. Mao, B. G. Bovard, H. A. Macleod, “Optical and microstructural properties of hafnium dioxide thin films,” Thin Solid Films 203, 227–250 (1991). [CrossRef]
  15. D. P. Arndt, R. M. A. Azzam, J. M. Bennett, J. P. Borgogno, C. K. Carniglia, W. E. Case, J. A. Dobrowolski, U. J. Gibson, T. Tuttle Hart, F. C. Ho, V. A. Hodgkin, W. P. Klapp, H. A. Macleod, E. Pelletier, M. K. Purvis, D. M. Quinn, D. H. Strome, R. Swenson, P. A. Temple, T. F. Thonn, “Multiple determination of the optical constants of thin-film coating materials,” Appl. Opt. 20, 3571–3596 (1984). [CrossRef]
  16. D. E. Aspnes, “Microstructural information from optical properties in semiconductor technology,” in Optical Characterization Techniques for Semiconductor Technology, D. E. Aspnes, R. F. Potter, S. S. So, eds., Proc. SPIE276, 188–195 (1981); see also references therein.
  17. K. Vedam, S. Y. Kim, L. D’Aries, “Nondestructive depth profiling of ZnS and MgO films by spectroscopic ellipsometry,” Opt. Lett. 12, 456–458 (1987). [CrossRef] [PubMed]
  18. N. K. Huang, Z. R. Feng, D. Z. Wang, “Microanalyses of Ar+-bombarded zirconia–yttria films on silicon substrates,” Thin Solid Films 221, 9–12 (1988). [CrossRef]
  19. D. L. Wood, K. Nassau, “Refractive index of cubic zirconia stabilized with yttria,” Appl. Opt. 21, 2978–2981 (1982). [CrossRef] [PubMed]
  20. P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1983). [CrossRef]
  21. Joint Committee on Powder Diffraction Standards, Powder Diffraction File Alphabetical Index Inorganic Phases (International Center for Diffraction Data, 1601 Park Lane, Swarthmore, Pa., 1986), Chap. 1, p. 550.
  22. H. P. Klug, L. E. Alexander, X-Ray Diffraction Procedure, 2nd ed. (Wiley, New York, 1974), Chap. 11, pp. 757–764.
  23. W. W. Kriegel, H. Palmour, Mechanical Properties of Engineering Ceramics (Interscience, New York, 1961), Chap.33, p. 583.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited