OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 29 — Oct. 10, 1996
  • pp: 5765–5775

Wide angular aperture holograms in photorefractive crystals by the use of orthogonally polarized write and read beams

Anthony W. Sarto, Kelvin H. Wagner, Robert T. Weverka, Samuel Weaver, and Ernst K. Walge  »View Author Affiliations


Applied Optics, Vol. 35, Issue 29, pp. 5765-5775 (1996)
http://dx.doi.org/10.1364/AO.35.005765


View Full Text Article

Enhanced HTML    Acrobat PDF (5273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a method of simultaneous holographic recording and readout in photorefractive crystals that provides high write–read beam isolation and wide angular bandwidth. The method uses orthogonally polarized read and write beams and parallel tangent diffraction geometry near the equal curvature condition to provide spatially separable, orthogonally polarized diffracted output beams with high isolation and wide Bragg-matched angular bandwidth. The available angular bandwidth of this read–write technique is analyzed, simulated, and experimentally investigated. The measured angular bandwidth internal to the crystal is approximately 18° × 6° for our 45°-cut BaTiO3 crystal, yet the entire hologram still demonstrates high Bragg selectivity. In contrast, traditional nonparallel-tangent geometries yield angular apertures of the order of 1° × 4°.

© 1996 Optical Society of America

History
Original Manuscript: July 27, 1995
Revised Manuscript: May 10, 1996
Published: October 10, 1996

Citation
Anthony W. Sarto, Kelvin H. Wagner, Robert T. Weverka, Samuel Weaver, and Ernst K. Walge, "Wide angular aperture holograms in photorefractive crystals by the use of orthogonally polarized write and read beams," Appl. Opt. 35, 5765-5775 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-29-5765


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980). [CrossRef]
  2. L. Pichon, J. P. Huignard, “Dynamic joint-Fourier transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals,” Opt. Commun. 36, 277–280 (1981). [CrossRef]
  3. V. Markov, S. Odoulov, M. Soskin, “Dynamic holography and optical image processing,” Opt. Laser Technol. 11, 95–99 (1979). [CrossRef]
  4. P. Yeh, D. Zhang, C. Gu, “Parallel subtraction of Fourier power spectrum using holographic interferometry,” Opt. Lett. 17, 70–72 (1992). [CrossRef] [PubMed]
  5. A. E. Chiou, P. Yeh, “Parallel image subtraction using a phase-conjugate Michelson interferometer,” Opt. Lett. 11, 306–308 (1986). [CrossRef] [PubMed]
  6. D. S. Oliver, P. Vohl, R. E. Aldrich, M. E. Behrndt, W. R. Buchan, R. C. Ellis, J. E. Genthe, J. R. Goff, S. L. Hou, G. M. Daniel, “Image storage and optical readout in a ZnS device,” Appl. Phys. Lett. 17, 416–418 (1970). [CrossRef]
  7. M. P. Petrov, A. V. Khomenko, M. V. Krasin’kova, V. I. Marakhonov, M. G. Shylyagin, “The PRIZ image converter and its use in optical data processing systems,” Sov. Phys. Tech. Phys. 26, 816–821 (1981).
  8. Y. Shi, D. Psaltis, A. Marrakchi, J. A. R. Tanguay, “Photorefractive incoherent-to-coherent optical converter,” Appl. Opt. 22, 3665–3667 (1983). [CrossRef] [PubMed]
  9. D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989). [CrossRef]
  10. P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989). [CrossRef]
  11. F. Vachss, P. Yeh, “Image-degradation mechanisms in photorefractive amplifiers,” J. Opt. Soc. Am. B 6, 1834–1844 (1989). [CrossRef]
  12. N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, “Holographic storage in electrooptic crystals II: beam-coupling-light amplification,” Ferroelectrics 22, 5061–5076 (1979).
  13. P. D. Foote, T. J. Hall, N. B. Aldridge, A. G. Levenston, “Photorefractive materials and their applications in optical image processing,” Proc. Inst. Electr. Eng. 133, 83–90 (1986).
  14. B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, “Real-time phase conjugate window for one-way optical field imaging through a distortion,” Appl. Phys. Lett. 41, 141–143 (1982). [CrossRef]
  15. J. Feinberg, “Imaging through a distorting medium with and without phase conjugation,” Appl. Phys. Lett. 42, 30–32 (1983). [CrossRef]
  16. K. Wagner, D. Psaltis, “Multilayer optical learning networks,” Appl. Opt. 26, 5061–5076 (1987). [CrossRef] [PubMed]
  17. Y. Owechko, “Cascaded-grating holography for artificial neural networks,” Appl. Opt. 32, 1380–1398 (1993). [CrossRef] [PubMed]
  18. I. M. Bel’dyugin, M. V. Zolotarev, K. A. Sviridov, “Optical neural computers based on photorefractive crystals,” Sov. J. Quantum Electron. 22, 384–399 (1992). [CrossRef]
  19. D. Psaltis, J. Yu, J. Hong, “Bias free time-integrating optical correlator using a photorefractive crystal,” Appl. Opt. 24, 3860–3865 (1985). [CrossRef] [PubMed]
  20. J. Khoury, V. Ryan, C. Woods, M. Cronin-Golomb, “Photorefractive optical lock-in detector,” Opt. Lett. 16, 1442–1444 (1991). [CrossRef] [PubMed]
  21. J. Khoury, V. Ryan, M. Cronin-Golomb, “Photorefractive frequency converter and phase-sensitive detector,” J. Opt. Soc. Am. B 10, 72–82 (1993). [CrossRef]
  22. R. T. Weverka, K. Wagner, “Adaptive phased-array radar processing using photorefractive crystals,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, ed., Proc. SPIE 1217, 173–182 (1990).
  23. A. W. Sarto, R. T. Weverka, K. Wagner, “Beam-steering and jammer-nulling photorefractive phased-array radar processor,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. SPIE 2155, 378–388 (1994).
  24. R. M. Montgomery, M. R. Lange, “Photorefractive adaptive filter structure with 40-dB interference rejection,” Appl. Opt. 30, 2844–2849 (1991). [CrossRef] [PubMed]
  25. F. Vachss, J. Hong, C. Keefer, “Adaptive signal processing using a photorefractive time integrating correlator,” Defense Advanced Research Projects Agency, Rome Laboratories Proceedings PSAA-91, 127–132 (1991).
  26. B. Widrow, S. D. Stearns, Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1985).
  27. R. T. Weverka, K. Wagner, A. W. Sarto, “Photorefractive processing for large adaptive phased-arrays,” Appl. Opt. 35, 1344–1366 (1996). [CrossRef] [PubMed]
  28. J. Hong, S. Hudson, J. Yu, D. Psaltis, “Photorefractive crystals as adaptive elements in acoustooptic filters,” in Optical Technology for Microwave Applications III, S. Yao, ed., Proc. SPIE 789, 136–144 (1987).
  29. J. Rhodes, “Adaptive filter with a time-domain implementation using correlation cancellation loops,” Appl. Opt. 22, 282–287 (1983). [CrossRef] [PubMed]
  30. A. W. Sarto, R. T. Weverka, K. H. Wagner, S. Weaver, “Wide angular aperture holograms in photorefractive crystals using orthogonally polarized write and read beams,” in Photorefractive Materials, Effects, and Devices, J. Feinberg, D. Anderson, eds., (National Institute of Standards and Technology, Gaithersburg, Md., 1995), pp. 214–217.
  31. P. P. Ewald, “Crystal optics for visible light and x-rays,” Rev. Mod. Phys. 37, 46–56 (1965). [CrossRef]
  32. V. V. Aristov, V. S. Shekhtman, “Properties of three-dimensional holograms,” Sov. Phys. Usp. 14, 263–277 (1971). [CrossRef]
  33. R. R. Mcleod, “Spectral-domain analysis and design of three-dimensional optical switching and computing systems,” Ph.D. dissertation, (University of Colorado, Boulder, Colo., 1995).
  34. R. T. Weverka, K. H. Wagner, R. R. McLeod, K. Wu, C. Garvin, Acousto-Optic Signal Processing: Theory and Implementation (Marcel Dekker, New York, 1995), Vol. 2, Chap. 15.
  35. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 4.
  36. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), Chap. 14.
  37. J. M. Cowley, Diffraction Physics (North-Holland, Amsterdam, 1981), p. 31.
  38. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974). [CrossRef]
  39. G. A. Coquin, J. P. Griffin, L. K. Anderson, “Wide-band acousto-optic deflectors using acoustic beam steering,” IEEE Trans. Sonics Ultrason. SU-17, 34–40 (1970). [CrossRef]
  40. D. A. Pinnow, “Acousto-optic light deflection: design considerations for first order beam steering,” IEEE Trans. Sonics Ultrason. SU-18209–214 (1971). [CrossRef]
  41. A. Korpel, R. Adler, P. Desmares, W. Watson, “A television display using acoustic deflection and modulation of coherent light,” Appl. Opt. 5, 1667–1675 (1966). [CrossRef] [PubMed]
  42. Y. Fainman, E. Klancnik, S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
  43. J. Feinberg, D. Heiman, J. A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980). [CrossRef]
  44. J. Feinberg, D. Heiman, J. A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate: erratum,” J. Appl. Phys. 52, 537 (1981). [CrossRef]
  45. J. Xu, R. Stroud, Acousto-Optic Devices, Wiley Series in Pure and Applied Optics (Wiley-Interscience, New York, 1992), Chap. 7, pp. 413–424.
  46. R. T. Weverka, K. Wagner, “Wide angular aperture acoustooptic Bragg cell,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. SPIE 1562, 66–72 (1991).
  47. K.-H. Hellwege, ed., Ferro- and Antiferroelectric Substances, Vol. 3 of Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology, (Springer-Verlag, Berlin, 1975).
  48. M. P. Tarr, M. Cronin-Golomb, “Birefringent phase matching for nonvolatile readout of holographic memories,” in Photorefractive Materials, Effects, and Devices, J. Feinberg, D. Anderson, eds., (National Institute of Standards and Technology, Gaithersburg, Md., 1995), pp. 435–438.
  49. M. Cronin-Golomb, M. P. Tarr, “Applications of birefringent phase matching for photorefractive devices,” Opt. Lett. 20, 2252–2254 (1995). [CrossRef] [PubMed]
  50. K. Y. Kos, A. Siahmakoun, “Phase-conjugate shear interferometer with multiple wavelengths,” Opt. Eng. 33, 3349–3358 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited