OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 30 — Oct. 20, 1996
  • pp: 5904–5910

Theory of concave gratings based on a recursive definition of facet positions

K. A. McGreer  »View Author Affiliations


Applied Optics, Vol. 35, Issue 30, pp. 5904-5910 (1996)
http://dx.doi.org/10.1364/AO.35.005904


View Full Text Article

Enhanced HTML    Acrobat PDF (339 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A general theory for concave gratings is presented that is based on a recursion formula for the facet positions and that differs from previous theories that are based on a power-series expansion of the light path function. In the recursion formula approach the facet positions are determined from a numerical solution for the roots of two constraint functions. Facet positions are determined in sequence, starting from the grating pole. One constraint function may be chosen to give a stigmatic point. A variety of grating designs are discussed, including a design that cannot be generated with the power-series approach.

© 1996 Optical Society of America

History
Original Manuscript: May 24, 1995
Revised Manuscript: January 11, 1996
Published: October 20, 1996

Citation
K. A. McGreer, "Theory of concave gratings based on a recursive definition of facet positions," Appl. Opt. 35, 5904-5910 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-30-5904


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. D. Soole, A. Scherer, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, M. A. Koza, “Monolithic InP/InGaAsP/InP grating spectrometer for the 1.48–1.56 μm wavelength range,” Appl. Phys. Lett. 58, 1949–1951 (1991). [CrossRef]
  2. C. Cremer, N. Emeis, M. Schier, G. Heise, G. Ebbinghaus, L. Stoll, “Grating spectrograph integrated with photodiode array in InGaAsP/InGaAs/InP,” IEEE Photon. Technol. Lett. 4, 108–110 (1992). [CrossRef]
  3. M. Fallahi, K. A. McGreer, A. Delage, I. M. Templeton, F. Chatenoud, R. Barber, “Grating demultiplexer integrated with MSM detector array in InGaAs/AlGaAs/GaAs for WDM,” IEEE Photon. Technol. Lett. 5, 794–797 (1993). [CrossRef]
  4. J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat, M. A. Koza, “Wavelength-selectable laser emission from a multi-stripe array grating integrated cavity (MAGIC) laser,” Appl. Phys. Lett. 61, 2750–2752 (1992). [CrossRef]
  5. R. J. Deri, J. S. Kallman, S. P. Dijaili, “Quantitative analysis of integrated optic waveguide spectrometers,” IEEE Photon. Technol. Lett. 6, 242–244 (1994). [CrossRef]
  6. K. A. McGreer, “Diffraction from concave gratings in planar waveguides,” IEEE Photon. Technol. Lett. 7, 324–326 (1995). [CrossRef]
  7. M. Wu, Y. J. Chen, “Design considerations for Rowland circle gratings used in photonic integrated devices for WDM applications,” J. Lightwave Technol. 12, 1939–1942 (1994). [CrossRef]
  8. C. H. F. Velzel, “General theory of the aberrations of diffraction gratings and gratinglike optical instruments,” J. Opt. Soc. Am. 66, 346–353 (1976). [CrossRef]
  9. H. Noda, T. Namioka, M. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64, 1031–1036 (1974). [CrossRef]
  10. H. A. Rowland, “On concave gratings for optical purposes,” Philos. Mag. 16, 197–210 (1883). [CrossRef]
  11. H. G. Beutler, “The theory of concave grating,” J. Opt. Soc. Am. 35, 311–350 (1945). [CrossRef]
  12. M. C. Hutley, Diffraction Gratings (Academic, New York, 1982).
  13. F. M. Gersimov, E. A. Yakovlev, I. V. Peisakhson, B. V. Koshelev, “Concave diffraction gratings with variable spacing,” Opt. Spectrosc. (USSR) 28, 423–426 (1970).
  14. T. Harada, T. Kita, “Mechanically ruled aberration-corrected concave gratings,” Appl. Opt. 19, 3987–3993 (1980). [CrossRef] [PubMed]
  15. K. R. Poguntke, J. B. D. Soole, “Design of a multistripe array grating integrated cavity (MAGIC) laser,” J. Lightwave Technol. 11, 2191–2200 (1993). [CrossRef]
  16. T. Onoka, “Aberration-corrected concave grating for the midinfrared spectrometer aboard the infrared telescope in space,” Appl. Opt. 34, 659–666 (1995). [CrossRef]
  17. S. O. Kastner, C. Wade, “Aspheric grating for extreme ultraviolet astronomy,” Appl. Opt. 17, 1252–1258 (1978). [CrossRef] [PubMed]
  18. R. März, C. Cremer, “On the theory of planar spectrographs,” J. Lightwave Technol. 10, 2017–2022 (1992). [CrossRef]
  19. R. Güther, S. Polze, “The construction of stigmatic points for concave gratings,” Opt. Acta 29, 659–665 (1982). [CrossRef]
  20. B. A. Capron, M. W. Beranek, R. W. Huggins, D. G. Koshinz, “Design and performance of a multiple element slab waveguide spectrograph for multimode fiber-optic WDM systems,” J. Lightwave Technol. 11, 2009–2014 (1993). [CrossRef]
  21. J. M. Lerner, R. L. Chambers, G. Passereau, “Flat field imaging spectroscopy using aberration corrected holographic gratings,” Imag. Spectrosc. 268, 122–128 (1981).
  22. K. A. McGreer, “A flat-field broadband spectrograph design,” IEEE Photon. Technol. Lett. 7, 397–399 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited