OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 30 — Oct. 20, 1996
  • pp: 5979–5987

Lossy multilayer channel optical waveguides analyzed by the transmission line matrix method

S. M. Moniri-Ardakani and E. N. Glytsis  »View Author Affiliations

Applied Optics, Vol. 35, Issue 30, pp. 5979-5987 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (333 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that the three-dimensional vectorial transmission line matrix (TLM) method is applicable to the analysis of lossy multilayer optical waveguiding structures. Any lossy multilayer waveguide geometry, including sharp discontinuities in the transverse plane, can be treated taking into account the coupling between all optical field components. The complex propagation constants (propagation constants and the attenuation coefficients) for the fundamental TE-like and TM-like modes can be determined. These parameters of the fundamental TM-like mode of a typical lossy multilayer rib dielectric waveguide are obtained as functions of free-space wavelength. Calculation of the electric-field pattern is also included. Numerical comparisons with the argument principle method (for the case of lossy multilayer slab waveguides) and the spectral-index technique (for the case of lossy multilayer rib waveguides) are also included, and it is shown that the application of the TLM method to lossy multilayer optical waveguides is accurate.

© 1996 Optical Society of America

Original Manuscript: July 18, 1995
Revised Manuscript: April 24, 1996
Published: October 20, 1996

S. M. Moniri-Ardakani and E. N. Glytsis, "Lossy multilayer channel optical waveguides analyzed by the transmission line matrix method," Appl. Opt. 35, 5979-5987 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kawakami, S. Nishida, “Perturbation theory of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. 11, 130–138 (1975). [CrossRef]
  2. E. Anemogiannis, E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992). [CrossRef]
  3. A. K. Ghatak, K. Thyagarajan, M. R. Shanoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5, 660–667 (1991). [CrossRef]
  4. L. Sun, E. Marhic, “Numerical study of attenuation in multilayer infrared waveguides by the chain convergence method,” J. Opt. Soc. Am. B 8, 478–483 (1991). [CrossRef]
  5. K. H. Schlereth, M. Tacke, “The complex propagation constant of multilayer waveguides: an algorithm for a personal computer,” IEEE J. Quantum Electron. 26, 626–630 (1990). [CrossRef]
  6. S. Ruschin, E. Marom, “Coupling effects in symmetrical three-guide structures,” J. Opt. Soc. Am. A 1, 1120–1128 (1984). [CrossRef]
  7. J. Chilwell, I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A 1, 742–753 (1984). [CrossRef]
  8. L. M. Walpita, “Solutions for planar optical waveguide equations by selecting zero elements in a characteristics matrix,” J. Opt. Soc. Am. A 2, 595–602 (1985). [CrossRef]
  9. L. Sun, G. L. Yip, “Analysis of metal-clad optical waveguide polarizers by the vector beam propagation method,” Appl. Opt. 33, 1047–1050 (1994). [CrossRef] [PubMed]
  10. C. Themistos, B. M. A. Rahman, K. T. V. Grattan, “Finite element analysis for lossy optical waveguides by using perturbation techniques,” Photon. Technol. Lett. 6, 537–539 (1994). [CrossRef]
  11. B. M. A. Rahman, J. B. Davies, “Finite element analysis of optical and microwave waveguide problems,” IEEE Trans. Microwave Theory Tech. MTT-32, 20–28 (1984). [CrossRef]
  12. B. M. A. Rahman, F. A. Fernandez, J. B. Davis, “Review of finite element methods for microwave and optical waveguides,” Proc. IEEE 79, 1442–1448 (1991). [CrossRef]
  13. K. Hayata, M. Koshiba, M. Suzuki, “Lateral mode analysis of buried heterostructure diode lasers by the finite element method,” IEEE J: Quantum Electron. 22, 781–788 (1986). [CrossRef]
  14. A. D. McAulay, “Variational finite-element solution for dissipative waveguides and transportation application,” IEEE Trans. Microwave Theory Tech. 25, 382–392 (1977). [CrossRef]
  15. K. Hayata, K. Miura, M. Koshiba, “Finite element formulation for lossy waveguides,” IEEE Trans. Microwave Theory Tech. 36, 268–276 (1988). [CrossRef]
  16. G. M. Berry, S. V. Burke, J. M. Heaton, D. R. Wight, “Analysis of multilayer semiconductor rib waveguides with high refractive index substrates,” Electron. Lett. 29, 1941–1942 (1993). [CrossRef]
  17. S. M. Moniri-Ardakani, E. N. Glytsis, “Application of the transmission line matrix method to the analysis of slab and channel optical waveguides,” Appl. Opt. 34, 2704–2711 (1995). [CrossRef] [PubMed]
  18. P. B. Johns, R. L. Beurle, “Numerical solution of 2-dimensional scattering problems using a transmission-line matrix,” Proc. Inst. Electr. Eng. 118, 1203–1208 (1971). [CrossRef]
  19. P. B. Johns, “Application of the transmission-line matrix method to homogenous waveguides of arbitrary cross-section,” Proc. Inst. Electr. Eng. 119, 1086–1091 (1972). [CrossRef]
  20. S. Akhtarzad, P. B. Johns, “Solutions of Maxwell’s equations in three space dimensions by the t.l.m. method of numerical analysis,” Proc. Inst. Electr. Eng. 122, 1344–1348 (1975). [CrossRef]
  21. S. Akhtarzad, P. B. Johns, “Three dimensional transmission-line matrix computer analysis of microstrip resonators,” IEEE Trans. Microwave Theory Tech. MTT-23, 990–997 (1975). [CrossRef]
  22. S. Akhtarzad, P. B. Johns, “Generalized element for t.l.m. method of analysis,” Proc. Inst. Electr. Eng. 122, 1349–1352 (1975). [CrossRef]
  23. W. J. R. Hoefer, “The transmission line matrix method theory and applications,” IEEE Trans. Microwave Theory Tech. MTT-33, 882–893 (1985). [CrossRef]
  24. P. B. Johns, “A symmetrical condensed node for TLM method,” IEEE Trans. Microwave Theory Tech. MTT-35, 370–377 (1987). [CrossRef]
  25. J. S. Nielsen, W. J. R. Hoefer, “Generalized dispersion analysis and spurious modes of 2-D and 3-D TLM formulations,” IEEE Trans. Microwave Theory Tech. 41, 1375–1384 (1993). [CrossRef]
  26. A. A. Oliner, S. T. Peng, “Guidance and leakage properties of a class of open dielectric waveguides. Part II. New physical effects,” IEEE Trans. Microwave Theory Tech. MTT-29, 855–869 (1981). [CrossRef]
  27. R. E. Collin, Field Theory of Guided Waves (IEEE Press, New York, 1991).
  28. H. Jin, R. Vahldieck, “Full-wave analysis of guiding structures using a 2-D array of 3-D TLM nodes,” IEEE Trans. Microwave Theory Tech. 41, 472–477 (1993). [CrossRef]
  29. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes: the Art of Scientific Computing (Cambridge U. Press, New York, 1989).
  30. M. S. Stern, P. C. Kendall, P. W. A. Mcllroy, “Analysis of the spectral index method for vector modes of rib waveguides,” Proc. Inst. Electr. Eng. Part J 137, 21–26 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited