OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 30 — Oct. 20, 1996
  • pp: 6028–6040

Validation of fascod3 and modtran3: comparison of model calculations with ground-based and airborne interferometer observations under clear-sky conditions

Jinxue Wang, Gail P. Anderson, Henry E. Revercomb, and Robert O. Knuteson  »View Author Affiliations


Applied Optics, Vol. 35, Issue 30, pp. 6028-6040 (1996)
http://dx.doi.org/10.1364/AO.35.006028


View Full Text Article

Enhanced HTML    Acrobat PDF (467 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The validation of fascod3 and modtran3 against ground-based and airborne high-resolution Michelson interferometer measurements under clear-sky conditions is presented. Important considerations including water vapor continuum, frequency-dependent sea surface emissivity in the IR window region, and spectral resolution of modtran3 in the comparison of model calculations with high-resolution interferometer measurements are discussed. Our results indicate that it is not adequate to assume sea surface emissivity of 1.0 [ɛ(ν) = 1.0] or a constant in the simulation of upwelling radiance observed by the airborne Michelson interferometer. The use of spectral emissivity (frequency-dependent emissivity) leads to much better agreement between model calculations and interferometer measurements in the IR window region from 750.0 to 1050.0 cm−1. This could have important implications for the retrieval of sea surface temperature, thin cirrus properties, and aerosol parameters because of the sea surface emissivity of 1.0 assumption commonly used by many researchers. Comparisons of modtran3 calculations with interferometer measurements show that the agreement might not be adequate at the nominal resolution of 2.0 cm−1, and further spectral degradation might be necessary to improve the agreement between measurements and modtran3 calculations. modtran should be used with caution for relatively high spectral resolution remote-sensing applications.

© 1996 Optical Society of America

History
Original Manuscript: December 3, 1995
Revised Manuscript: March 18, 1996
Published: October 20, 1996

Citation
Jinxue Wang, Gail P. Anderson, Henry E. Revercomb, and Robert O. Knuteson, "Validation of fascod3 and modtran3: comparison of model calculations with ground-based and airborne interferometer observations under clear-sky conditions," Appl. Opt. 35, 6028-6040 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-30-6028


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Clough, M. J. Iacono, J.-L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15,761–15,785 (1992). [CrossRef]
  2. G. P. Anderson, J. H. Chetwynd, FASCOD3P User Guide (U.S. Air Force Phillips Laboratory, Hanscom Air Force Base, Mass., 1992).
  3. G. P. Anderson, J. H. Chetwynd, J. Wang, “FASCODE: an update and recent validations/applications,” presented at the 17th Annual Conference on Atmospheric Transmission Models, U.S. Air Force Phillips Laboratory, Hanscom Air Force Base, Mass., 7–8 June 1994.
  4. F. X. Kneizys, G. P. Anderson, J. H. Chetwynd, L. W. Abreu, M. L. Hoke, S. A. Clough, R. D. Worsham, E. P. Shettle, “Status of PL/GP high resolution radiance-transmittance model: FASCODE,” presented at the 15th Annual Conference on Atmospheric Transmission Models, U.S. Air Force Phillips Laboratory, Hanscom Air Force Base, Mass., 2–3 June 1992.
  5. R. L. Sundberg, J. W. Duff, J. H. Grunninger, L. S. Bernstein, R. D. Sharma, M. W. Matthew, S. M. Adler-Goldern, R. J. Healey, J. H. Brown, D. C. Robertson, “SHARC: a model for calculating atmospheric infrared radiation under non-equilibrium conditions,” AGU Monograph for the Chapman Conference on the Upper Mesosphere and Lower Thermosphere (American Geophysical Union, Washington, D.C., 1992).
  6. R. G. Isaacs, S. A. Clough, R. D. Worsham, J. L. Moncet, W. O. Gallery, “Advanced spectral modeling development,” Tech. Rep. PL-TR-92-2231 (U.S. Air Force Phillips Laboratory, Hanscom Air Force Base, Mass., 1992).
  7. S. A. Clough, F. X. Kneizys, R. Davis, R. Gamache, R. Tipping, “Theoretical line shape for water vapor: application to the continuum,” in Atmospheric Water Vapor, A. Deepak, ed. (Academic, New York, 1980), pp. 25–46.
  8. S. A. Clough, F. X. Kneizys, R. W. Davis, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–241 (1989). [CrossRef]
  9. S. A. Clough, Atmospheric and Environmental Research, Inc., Cambridge, Mass. (personal communication, 1994).
  10. H. E. Revercomb, R. O. Knuteson, S. C. Lee, “Validation of FASCOD3P using University of Wisconsin HIS data,” Tech. Rep. under contract F19628-91-K-0007 (U.S. Air Force Phillips Laboratory, Hanscom Air Force Base, Mass., 1993).
  11. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high resolution interferometer sounder,” Appl. Opt. 27, 3210–3218 (1988). [CrossRef] [PubMed]
  12. K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sensing Environ. 24, 313–329 (1988). [CrossRef]
  13. H. E. Revercomb, F. A. Best, R. G. Dedecker, T. P. Dirkx, R. A. Herbsleb, R. O. Knuteson, J. F. Short, W. L. Smith, “Atmospheric emitted radiance interferometer (AERI) for ARM,” presented at the Fourth Symposium on Global Change Studies, AMS 73rd Annual Meeting, Anaheim, Calif., 17–22 January 1993.
  14. W. O. Gallery, S. A. Clough, “FFTSCAN: a program for spectral smoothing using Fourier transforms,” Tech. Rep. PL-TR-92-2131 (U.S. Air Force Phillips Laboratory, Hanscom Air Force Base, Mass., 1992).
  15. D. P. Edwards, “GENLN2: A general line-by-line atmospheric transmittance and radiance model,” Tech. Note NCAR/TN-367 (National Center for Atmospheric Research, Boulder, Colo., 1992).
  16. D. P. Edwards, National Center for Atmospheric Research, Boulder, Colo. (personal communication, 1994).
  17. F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. Selby, S. A. Clough, “Users Guide to LOWTRAN 7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  18. A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” Tech. Rep. PL-TR-89-0122 (U.S. Air Force Phillips Laboratory, Hanscom Air Force Base, Mass., 1989).
  19. L. S. Bernstein, A. Berk, P. K. Acharya, D. C. Robertson, G. P. Anderson, J. H. Chetwynd, L. M. Kimball, “Very narrow band model calculations of atmospheric fluxes and cooling rates,” J. Atmos. Sci. (to be published).
  20. K. Minschwaner, G. P. Anderson, L. A. Hall, J. H. Chetwynd, R. J. Thomas, D. W. Rusch, A. Berk, J. A. Conant, “Scattered ultraviolet radiation in the upper stratosphere 2: models and measurements,” J. Geophys. Res. 100, 11,165–11,171 (1995).
  21. K. Stamnes, S. -C. Tsay, W. J. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]
  22. K. Stamnes, “Upgrade of FASCODE and MODTRAN to full soar capability including multiple scattering and spherical geometry,” Final Rep. (U.S. Air Force Phillips Laboratory/Geophysics Directorate, University of Alaska, Fairbanks, Alaska, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited