OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 30 — Oct. 20, 1996
  • pp: 6028–6040

Validation of fascod3 and modtran3: comparison of model calculations with ground-based and airborne interferometer observations under clear-sky conditions

Jinxue Wang, Gail P. Anderson, Henry E. Revercomb, and Robert O. Knuteson  »View Author Affiliations


Applied Optics, Vol. 35, Issue 30, pp. 6028-6040 (1996)
http://dx.doi.org/10.1364/AO.35.006028


View Full Text Article

Enhanced HTML    Acrobat PDF (467 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The validation of fascod3 and modtran3 against ground-based and airborne high-resolution Michelson interferometer measurements under clear-sky conditions is presented. Important considerations including water vapor continuum, frequency-dependent sea surface emissivity in the IR window region, and spectral resolution of modtran3 in the comparison of model calculations with high-resolution interferometer measurements are discussed. Our results indicate that it is not adequate to assume sea surface emissivity of 1.0 [ɛ(ν) = 1.0] or a constant in the simulation of upwelling radiance observed by the airborne Michelson interferometer. The use of spectral emissivity (frequency-dependent emissivity) leads to much better agreement between model calculations and interferometer measurements in the IR window region from 750.0 to 1050.0 cm−1. This could have important implications for the retrieval of sea surface temperature, thin cirrus properties, and aerosol parameters because of the sea surface emissivity of 1.0 assumption commonly used by many researchers. Comparisons of modtran3 calculations with interferometer measurements show that the agreement might not be adequate at the nominal resolution of 2.0 cm−1, and further spectral degradation might be necessary to improve the agreement between measurements and modtran3 calculations. modtran should be used with caution for relatively high spectral resolution remote-sensing applications.

© 1996 Optical Society of America

History
Original Manuscript: December 3, 1995
Revised Manuscript: March 18, 1996
Published: October 20, 1996

Citation
Jinxue Wang, Gail P. Anderson, Henry E. Revercomb, and Robert O. Knuteson, "Validation of fascod3 and modtran3: comparison of model calculations with ground-based and airborne interferometer observations under clear-sky conditions," Appl. Opt. 35, 6028-6040 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-30-6028

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited