OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 30 — Oct. 20, 1996
  • pp: 6041–6053

Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods

Jochen Stutz and Ulrich Platt  »View Author Affiliations


Applied Optics, Vol. 35, Issue 30, pp. 6041-6053 (1996)
http://dx.doi.org/10.1364/AO.35.006041


View Full Text Article

Acrobat PDF (651 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Differential optical absorption spectroscopy (DOAS) has become a widely used method to measure trace gases in the atmosphere. Their concentration is retrieved by a numerical analysis of the atmospheric absorption spectra, which often are a combination of overlapping absorption structures of several trace gases. A new analysis procedure was developed, modeling atmospheric spectra with the absorption structures of the individual trace gases, to determine their concentrations. The procedure also corrects differences in the wavelength–pixel mapping of these spectra. A new method to estimate the error of the concentrations considers the uncertainty of this correction and the influence of random residual structures in the absorption spectra.

© 1996 Optical Society of America

History
Original Manuscript: August 14, 1995
Revised Manuscript: March 6, 1996
Published: October 20, 1996

Citation
Jochen Stutz and Ulrich Platt, "Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods," Appl. Opt. 35, 6041-6053 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-30-6041


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. M. B. Dobson, D. N. Harrison, “Measurements of the amount of ozone in the earth’s atmosphere and its relation to other geophysical conditions, Part 1,” Proc. R. Soc. London 110, 660–693 (1926). [CrossRef]
  2. J. F. Noxon, “Nitrogen dioxide in the stratosphere and troposphere measured by ground-based absorption spectroscopy,” Science 189, 547–549 (1975). [CrossRef] [PubMed]
  3. J. F. Noxon, E. C. Whipple, R. S. Hyde, “Stratospheric NO2. 1. Observational method and behavior at midlatitudes,” J. Geophys. Res. 84, 5047–5076 (1979). [CrossRef]
  4. U. Platt, D. Perner, H. Pätz, “Simultaneous measurements of atmospheric CH2O, O3 and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329–6335 (1979). [CrossRef]
  5. U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Chemical Analysis Series (Wiley, New York, 1994), Vol. 127.
  6. S. Solomon, A. L. Schmeltekopf, R. W. Sanders, “On the interpretation of zenith sky absorption measurements,” J. Geophys. Res. 92, 8311–8319 (1987). [CrossRef]
  7. D. Perner, U. Platt, “Detection of nitrous acid in the atmosphere by differential optical absorption,” Geophys. Res. Lett. 6, 917–920 (1979). [CrossRef]
  8. D. Perner, D. H. Ehhalt, H. W. Paetz, U. Platt, E. P. Roeth, A. Volz, “OH-radicals in the lower troposphere,” Geophys. Res. Lett. 3, 466–468 (1976). [CrossRef]
  9. U. Platt, D. Perner, G. W. Harris, A. M. Winer, J. N. Pitts, “Detection of NO3 in the polluted troposphere by differential optical absorption,” Geophys. Res. Lett. 7, 89–92 (1980). [CrossRef]
  10. M. Hausmann, U. Platt, “Spectroscopic measurement of bromine oxide and ozone in the high arctic during Polar Sunrise Experiment 1992,” J. Geophys. Res. 99, 25399–25413 (1994). [CrossRef]
  11. R. W. Sanders, S. Solomon, M. A. Carroll, A. L. Schmeltekopf, “Ground-based measurements of O3, NO2, OClO, and BrO during the 1987 Antarctic ozone depletion event,” in Ozone in the Atmosphere, Proceedings of the Quadrennial Ozone Symposium 1988, R. D. Bojkov, P. Fabian, eds. (Deepak Publishing, Hampton, Va., 1989), pp. 65–70.
  12. K. Pfeilsticker, U. Platt, “Airborne measurements during the Arctic stratospheric experiment: observation of O3 and NO2,” Geophys. Res. Lett. 21, 1375–1378 (1994). [CrossRef]
  13. U. Platt, D. Perner, “Measurements of atmospheric trace gases by long path differential UV/visible absorption spectroscopy,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, eds. (Springer-Verlag, New York, 1983), pp. 95–105.
  14. A. M. Bass, R. J. Paur, “The ultraviolet cross-sections of ozone. I. The measurements,” in Atmospheric Ozone (Reidel, Dordrecht, The Netherlands, 1985), pp. 606–629.
  15. W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. 40, 195–217 (1987). [CrossRef]
  16. A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2 absorption cross section measurements in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25599–25605 (1994). [CrossRef]
  17. C. A. Cantrell, J. A. Davidson, A. H. McDaniel, R. E. Shetter, J. G. Calvert, “Temperature-dependent formaldehyde cross section in the near-ultraviolet spectral region,” J. Phys. Chem. 94, 3902–3908 (1990). [CrossRef]
  18. K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Quart. Appl. Math 2, 164–168 (1944).
  19. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math. 11, 431–441 (1963). [CrossRef]
  20. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vettering, Numerical Recipes in C (Cambridge University, Cambridge, England, 1986).
  21. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).
  22. D. L. Albritton, A. L. Schmeltekopf, R. N. Zare, “An introduction to the least-squares fitting of spectroscopic data,” in Molecular Spectroscopy: Modern Research, R. K. Narahari, M. W. Weldon, eds. (Academic, Orlando, Florida, 1976).
  23. R. W. Cunningham, “Comparison of three methods for determining fit parameter uncertainies for the Marquardt compromise,” Comput. Phys. 7, 570–576 (1993). [CrossRef]
  24. J. Stutz, U. Platt, “A new generation of DOAS instruments,” TOPAS/EUROTRAC, in press.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited