OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 31 — Nov. 1, 1996
  • pp: 6131–6139

Parabolic liquid mirrors in optical shop testing

Nathalie M. Ninane and Claude A. Jamar  »View Author Affiliations


Applied Optics, Vol. 35, Issue 31, pp. 6131-6139 (1996)
http://dx.doi.org/10.1364/AO.35.006131


View Full Text Article

Enhanced HTML    Acrobat PDF (754 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A parabolic liquid mirror obtained by the rotation of a mercury bath around a vertical axis has been built and its optical surface characteristics measured to demonstrate that it can be used in optical shop testing as a reference surface. A linear Hartmann test allowed us to check that the focal length is well related to the rotation velocity, following the theory, and that no spherical aberration is present, as assumed by previous authors. The spherical aberration has been found to be smaller than λ/50 at 633 nm. An interferometric test of the mirror compared with a null lens gave information about the quality of the optical surface for which the rms wave-front error, when the random errors are averaged, is ∼λ./25. Because modifying the mirror diameter is cheap and fast and adjusting its focal length within a large range is straightforward, the parabolic liquid mirror can become a highly adaptable tool in optical metrology. In particular, it can be used in optical shop testing as a reference surface to test null correctors, to check any system developed to control the shape of large parabolic or quasiparabolic top-quality solid-state mirrors, or to make holographic references of such surfaces.

© 1996 Optical Society of America

History
Original Manuscript: January 17, 1996
Revised Manuscript: April 22, 1996
Published: November 1, 1996

Citation
Nathalie M. Ninane and Claude A. Jamar, "Parabolic liquid mirrors in optical shop testing," Appl. Opt. 35, 6131-6139 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-31-6131


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Lord Rayleigh, “Interference bands and their applications,” Nature (London) 48, 212–214 (1893). [CrossRef]
  2. D. A. Kestelsen, D. S. Anderson, “Optical testing with large liquid flats,” in Advances in Fabrication and Metrology for Optics and Large Optics, J. B. Arnold, R. E. Parks, eds., Proc. SPIE966, 365–371 (1988).
  3. E. F. Borra, “The liquid mirror telescope as a viable astronomical tool,” J. R. Astron. Soc. Can. 76, 245–256 (1982).
  4. E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, E. Boily, “Liquid mirrors: optical shop tests and contribution to the technology,” Astrophys. J. 393, 829–847 (1992). [CrossRef]
  5. P. Hickson, E. Borra, R. Cabanac, R. Content, B. K. Gibson, G. A. H. Walker, “UBC/Laval 2.7-meter liquid mirror telescope,” Astrophys. J. 436, L201–L204 (1994). [CrossRef]
  6. R. J. Sica, S. Sargoytchev, P. S. Argall, E. F. Borra, L. Girard, C. T. Sparrow, S. Flatt, “Lidar measurements taken with a large-aperture liquid mirror. 1. Rayleigh-scatter system,” Appl. Opt. 34, 6925–6936 (1995). [CrossRef] [PubMed]
  7. E. F. Borra, M. Beauchemin, R. Arsenault, R. Lalande, “Optical shop testing of liquid mirrors,” Publ. Astron. Soc. Pac. 97, 454–464 (1985). [CrossRef]
  8. E. F. Borra, R. Content, M. Drinkwater, S. Szapiel, “A diffraction-limited f/2 1.5-meter diameter liquid mirror,” Astrophys. J. 346, L41–L44 (1989). [CrossRef]
  9. E. F. Borra, R. Content, M. Drinkwater, L. Girard, L. M. Tremblay, S. Szapiel, B. K. Gibson, P. Hickson, C. Morbey, “Liquid mirrors: a progress report,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 653–662 (1990).
  10. E. F. Borra, R. Content, L. Girard, “Optical shop tests of a f/1.2 2.5-meter diameter liquid mirror,” Astrophys. J. 418, 943–946 (1993). [CrossRef]
  11. F. Biesel, “Calcul de l'amortissement d'une houle dans un liquide visqueux de profondeur finie,” Houille Blanche 5, 630–634 (1949). [CrossRef]
  12. Ph. M. Gerhart, R. J. Gross, J. I. Hoschstein, “Mechanics of nonflowing fluids,” in Fundamentals of Fluid Mechanics (Addison-Wesley, New York, 1992), pp. 88–93.
  13. E. F. Borra, M. Beauchemin, R. Lalande, “Liquid mirror telescopes: observations with a 1 meter diameter prototype and scaling-up considerations,” Astrophys. J. 297, 846–851 (1985). [CrossRef]
  14. B. Gibson, P. Hickson, “Liquid mirror surface aberrations. I. Wavefront analysis,” Astrophys. J. 391, 409–417 (1992). [CrossRef]
  15. M. Alonso, E. J. Finn, “Mouvement relatif,” in Physique Générale (InterEdition, Paris, 1977), pp. 133–135.
  16. I. Ghozeil, “Hartmann and other screen tests,” in Optical Shop Testing, D. Malacara, ed. (Wiley, New York, 1978), pp. 88–93.
  17. J. L. Rayces, “Exact relation between wave aberration and ray aberration,” Opt. Acta 11, 323–349 (1964). [CrossRef]
  18. V. N. Mahajan, ed., Aberration Theory Made Simple, Vol. TT06 of SPIE Tutorial Text Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1991). [CrossRef]
  19. J. M. Sasian, “Design of null lens correctors for the testing of astronomical optics,” Opt. Eng. 27, 1051–1056 (1988).
  20. J. M. Sasian, “Optimum configuration of the Offner null corrector: testing an F/1 paraboloid,” in Surface Characterization and Testing II, J. E. Greivenkamp, M. Young, eds., Proc. SPIE1164, 8–12 (1989).
  21. M. C. Ruda, Optical Alignment Techniques, (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990).
  22. W. Walter, “High precision antenna structures, FIRST related technology programme,” Final Rep. of ESA contract 8556/89/NL/PP(SC) RST 121-31/92 (European Space Agency, Noordwijk, 1992).
  23. N. Ninane, A. Orban, “Far Infrared and Submillimeter Space Telescope: on ground verification of high precision antenna structures,” Final Rep. of ESA contract 9939/92/NL/BS Task 93/CSL/01/04/61C (European Space Agency, Noordwijk, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited