OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 31 — Nov. 1, 1996
  • pp: 6186–6189

Finite element ray tracing: a new method for ray tracing in gradient-index media

Bernold Richerzhagen  »View Author Affiliations


Applied Optics, Vol. 35, Issue 31, pp. 6186-6189 (1996)
http://dx.doi.org/10.1364/AO.35.006186


View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

I apply the principle of finite elements, known in optics for calculating the beam propagation in waveguide structures, for calculation of meridional rays in inhomogeneous media. The plane is divided into finite elements that have a constant refractive index. The ray trajectory is calculated by a simple algorithm. Contrary to the existing methods, the model I propose in this research does not require an explicit formula for the index distribution. Only the numerical representation is sufficient, which can be a major advantage for calculation of the light propagation in real problems, such as the thermal lensing effect.

© 1996 Optical Society of America

History
Original Manuscript: July 14, 1995
Revised Manuscript: May 3, 1996
Published: November 1, 1996

Citation
Bernold Richerzhagen, "Finite element ray tracing: a new method for ray tracing in gradient-index media," Appl. Opt. 35, 6186-6189 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-31-6186


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born, E. Wolf, Principles of Optics, 6. ed. (Pergamon, New York, 1980), pp. 109–127.
  2. E. W. Marchand, “Ray tracing in gradient-index media,” J. Opt. Soc. Am. 60, 1–7 (1970). [CrossRef]
  3. E. W. Marchand, Gradient Index Optics (Academic, New York, 1978), Chaps. 4–5, pp. 43–66.
  4. E. W. Marchand, “Ray tracing in cylindrical gradient-index media,” Appl. Opt. 11, 1104–1106 (1972). [CrossRef] [PubMed]
  5. W. Streifer, K. B. Paxton, “Analytic solution of ray equations in cylindrically inhomogeneous guiding media. 1. Meridional rays,” Appl. Opt. 10, 769–775 (1971). [CrossRef] [PubMed]
  6. A. D. Pearson, W. G. French, E. G. Rawson, “Preparation of a light focusing glass rod by ion-exchange techniques,” Appl. Phys. Lett. 15, 76–77 (1969). [CrossRef]
  7. T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, “Selfoc lenses,” presented at IEEE/Optical Society of America Joint Conference on Laser Engineering Applications, Washington, D.C., May 1969.
  8. H. A. Buchdahl, “Rays in gradient-index media: separable systems,” J. Opt. Soc. Am. 63, 46–49 (1973). [CrossRef]
  9. D. T. Moore, “Ray tracing in gradient-index media,” J. Opt. Soc. Am. 65, 451–455 (1975). [CrossRef]
  10. L. Montagnino, “Ray tracing in inhomogenous media,” J. Opt. Soc. Am 58, 1667–1668 (1968). [CrossRef]
  11. A. Sharma, D. Vizia Kumar, A. K. Ghatak, “Tracing rays through graded-index media: a new method,” Appl. Opt. 21, 984–987 (1982). [CrossRef] [PubMed]
  12. Y. Chung, N. Dagli, “Modeling of guided-wave optical components with efficient finite-difference beam propagation methods,” IEEE Antennas Propag. Soc. Int. Symp. 1, 248–250 (1992). [CrossRef]
  13. T. Itoh, Finite Element Method in Numerical Techniques for Microwave and Millimeter-Wave Passive Structures (Wiley, New York, 1989), Chap. 1, pp. 2–62.
  14. W. H. Press, B. P. Flannery, S. A. Teukilsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, New York, 1989), Chap. 17, pp. 615–622.
  15. A. R. Mitchell, D. F. Griffiths, The Finite Difference Method in Partial Differential Equation (Wiley, New York, 1980), Chap. 1.
  16. A. R. Mitchell, R. Wait, The Finite Element Method in Partial Differential Equation (Wiley, New York, 1977), Chap. 7, pp. 166–190.
  17. J. B. Scarborough, Numerical Mathematical Analysis (Johns Hopkins U. Press, Baltimore, 1966), Chap. 97, pp. 299–303.
  18. B. Richerzhagen, G. Delacrétaz, R. P. Salathé, “Complete model to simulate the thermal defocusing of a laser beam focused in water,” Opt. Eng. 35 (7) (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited