OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 31 — Nov. 1, 1996
  • pp: 6195–6202

Subwavelength transmission grating retarders for use at 10.6 μm

D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord  »View Author Affiliations


Applied Optics, Vol. 35, Issue 31, pp. 6195-6202 (1996)
http://dx.doi.org/10.1364/AO.35.006195


View Full Text Article

Enhanced HTML    Acrobat PDF (400 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Designs are given for gallium–arsenide subwavelength grating retarders operating at 10.6 μm. A design procedure is detailed that takes into account the reflections at all surfaces and that uses numerical optimization to improve the transmittance of the retarders to nearly 100%. It is shown that the homogeneous uniaxial layer model for subwavelength gratings can be used to provide starting points for the Nelder–Mead simplex optimization, obviating the need for stochastic optimization techniques such as simulated annealing. An analysis of the designs with respect to wavelength, angle of incidence, and fabrication tolerances indicates that such grating retarders will perform favorably compared with commercial alternatives.

© 1996 Optical Society of America

History
Original Manuscript: December 21, 1995
Revised Manuscript: March 25, 1996
Published: November 1, 1996

Citation
D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, "Subwavelength transmission grating retarders for use at 10.6 μm," Appl. Opt. 35, 6195-6202 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-31-6195


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Drake, “Solving problems of polarization in cutting and scribing applications,” Ind. Laser Rev. 2, 16–18 (1988).
  2. W. H. Southwell, “Multilayer coating design achieving a broadband 90° phase shift,” Appl. Opt. 19, 2688–2692 (1980). [CrossRef] [PubMed]
  3. S. J. Elston, G. P. Bryan, J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B 44, 6393–6400 (1991). [CrossRef]
  4. C. W. Haggans, L. Li, T. Fujita, R. K. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Modern Opt. 40, 675–686 (1993). [CrossRef]
  5. V. N. Okorkov, A. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, V. P. Yakunin, “Phase retarder for transformation of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metal diffraction gratings,” Opt. Eng. 33, 3145–3155 (1994). [CrossRef]
  6. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983). [CrossRef]
  7. R. C. Enger, S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983). [CrossRef] [PubMed]
  8. L. Cescato, E. Gluch, N. Streibl, “Holographic quarterwave plates,” Appl. Opt. 29, 3286–3290 (1990). [CrossRef] [PubMed]
  9. N. Davidson, A. A. Friesem, E. Hasman, “Computergenerated relief gratings as space-variant polarization elements,” Opt. Lett. 17, 1223–1227 (1991).
  10. R. E. Collin, J. Brown, “The design of quarter-wave matching layers for dielectric surfaces,” Proc. Inst. Electr. Eng. Part C 103, 153–158 (1956).
  11. R. E. Collin, “Reflection and transmission at a slotted dielectric interface,” Can. J. Phys. 34, 398–411 (1956). [CrossRef]
  12. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  13. R. C. McPhedran, L. C. Botten, M. S. Craig, M. Neviere, D. Maystre, “Lossy lamellar gratings in the quasistatic limit,” Opt. Acta 29, 289–312 (1982). [CrossRef]
  14. T. K. Gaylord, W. E. Baird, M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt. 25, 4562–4567 (1986). [CrossRef] [PubMed]
  15. E. N. Glytsis, T. K. Gaylord, “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Appl. Opt. 31, 4459–4470 (1992). [CrossRef] [PubMed]
  16. E. Gluch, P. Kipfer, J. T. Sheridan, N. Streibel, “Form birefringence of surface relief gratings and its angular dependence,” Opt. Commun. 89, 173–177 (1992). [CrossRef]
  17. D. H. Raguin, G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993). [CrossRef] [PubMed]
  18. C. W. Haggans, L. Li, R. K. Kostuk, “Effective medium theory of zeroth order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993). [CrossRef]
  19. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33, 2695–2706 (1994). [CrossRef] [PubMed]
  20. H. S. Kirschbaum, S. Chen, “A method of producing broadband circular polarization employing an anisotropic dielectric,” IRE Trans. Microwave Theory and Tech. MTT-5, 199–203 (1957). [CrossRef]
  21. R. E. VanDoeren, R. J. Plugge, “Nomogram speeds design of anisotropic dielectric devices,” Microwaves 5, 28–31 (1966).
  22. L. L. Goldstone, “Mm wave transmission polarizer,” in Antennas and Propagation: 1979 International Symposium Digest (IEEE, New York, 1979), Vol. 2, pp. 606–609. [CrossRef]
  23. Y. Ono, Y. Kimura, Y. Ohta, N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt. 26, 1142–1146 (1987). [CrossRef] [PubMed]
  24. E. B. Grann, M. G. Moharam, D. A. Pommet, “Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings,” J. Opt. Soc. Am. A 11, 2695–2703 (1994). [CrossRef]
  25. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).
  26. D. Berreman, “Optics in stratified and anisotropic media: 4 × 4 matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972). [CrossRef]
  27. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. A 72, 1385–1392 (1982). [CrossRef]
  28. L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Modern Opt. 40, 553–573 (1993). [CrossRef]
  29. I. Richter, P. Sun, F. Xu, Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34, 2421–2429 (1995). [CrossRef] [PubMed]
  30. J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
  31. A. Corana, M. Marchesi, C. Martini, S. Ridella, “Minimizing multimodal functions of continuous variables with the ‘simulated annealing’ algorithm,” Assoc. Comput. Mach. Trans. Math. Software 13, 262–280 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited