OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 31 — Nov. 1, 1996
  • pp: 6216–6218

Antireflection coatings for UV radiation obtained by molecular-beam deposition

S. Laux, K. Mann, B. Granitza, U. Kaiser, and W. Richter  »View Author Affiliations

Applied Optics, Vol. 35, Issue 31, pp. 6216-6218 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (305 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed fluoride antireflection (AR) coatings on MgF2 substrates for a wavelength of 248 nm by molecular-beam deposition. Transmission and laser-induced damage threshold of the samples were measured and atomic force microscope (AFM) investigations were carried out. We compare a 14-layer design for AR coatings with sublayer thicknesses of 12 nm with a conventional two-layer design with quarter-wavelength thicknesses. The laser-induced damage threshold of the 14-layer coating is slightly higher than that of the two-layer coating. The AFM surface images show that the 14-layer coating has a smoother surface than the two-layer coating.

© 1996 Optical Society of America

Original Manuscript: October 13, 1995
Revised Manuscript: March 7, 1996
Published: November 1, 1996

S. Laux, K. Mann, B. Granitza, U. Kaiser, and W. Richter, "Antireflection coatings for UV radiation obtained by molecular-beam deposition," Appl. Opt. 35, 6216-6218 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Rainer, W. H. Lowdermilk, D. Milam, C. K. Carniglia, T. T. Hart, T. L. Lichtenstein, “Materials for optical coatings in the ultraviolet,” Appl. Opt. 24, 496– 500 (1985). [CrossRef] [PubMed]
  2. J. Kolbe, H. Mueller, H. Schink, H. Welling, J. Ebert, “Laser induced damage thresholds of dielectric coatings at 193 nm and correlations to optical constants and process parameters,” Natl. Stand. Technol. Spec. Publ. 801, p. 404 (1990).
  3. D. J. Krajnovich, M. Kulkarni, W. Leung, A. C. Tam, A. Spool, B. York, “Testing of the durability of single-crystal calcium fluoride with and without antireflection coatings for use with high-power KrF excimer lasers,” Appl. Opt. 31, 6062–6075 (1992). [CrossRef] [PubMed]
  4. N. Kaiser, “Resistance of coated optics to UV laser irradiation,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 722 (1994).
  5. K. Mann, E. Eva, A. Hopfmueller, “Damage testing and characterization of dielectric coatings for high power excimer lasers,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 731 (1994).
  6. N. Kaiser, B. Anton, H. Jaenchen, K. Mann, E. Eva, C. Fischer, R. Henking, D. Ristau, P. Weissbrodt, D. Mademann, L. Raupach, E. Hacker, “Laser conditioning of LaF3/MgF2 dielectric coatings for excimer lasers,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. K. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 8 (1994).
  7. N. Kaiser, H. Uhlig, U. B. Schallenberg, B. Anton, K. Mann, E. Eva, “High damage threshold Al2O3/SiO2 dielectric coatings for excimer lasers,” Thin Solid Films 260, 86–92 (1995). [CrossRef]
  8. T. Izawa, N. Yamamura, R. Uchimura, I. Hashimoto, T. Yakuoh, Y. Uwadano, Y. Matsumoto, M. Yano, “Highly damage-resistant reflectors for 248 nm formed by fluoride multilayers,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. Newnam, M. Soileau, eds., Proc. SPIE1441, 339 (1990).
  9. I. M. Thomas, “Porous fluoride antireflective coatings,” Appl. Opt. 27, 3356–3358 (1988). [CrossRef] [PubMed]
  10. K. L. Lewis, J. A. Savage, “A fundamental approach towards improved optical coatings,” Natl. Bur. Stand. (U.S.) Spec. Publ. 688, 277–286 (1985).
  11. K. L. Lewis, I. T. Muirhead, A. M. Pitt, A. G. Gullis, N. G. Chew, A. Miller, T. J. Wyatt-Davies, “Molecular beam deposition of optical coatings and their characterization,” App. Opt. 28, 2785–2791 (1989). [CrossRef]
  12. I. T. Muirhead, C. C. Hale, S. P. Fisher, G. J. H. Mathew, “Interference filters from molecular beam deposition,” in Optical Thin Films and Applications, R. Herrmann, ed., Proc. SPIE1270, 184 (1990).
  13. S. Laux, W. Richter, “Packing density calculation of thin fluoride films from infrared transmission spectra,” Appl. Opt. 35, 97–101 (1996). [CrossRef] [PubMed]
  14. K. Mann, H. Gerhardt, “Set-up of a damage testing facility for excimer laser radiation,” in Excimer Lasers and Applications, D. Basting, ed., Proc. SPIE1023, 136 (1989).
  15. K. Mann, H. Gerhardt, “Automated damage testing facility for excimer laser optics,” Natl. Inst. Stand. Technol. Spec. Publ. 801, p. 39 (1990).
  16. U. Kaiser, N. Kaiser, P. Weissbrodt, U. Mademann, E. Hacker, H. Mueller, “Structure of thin fluoride films deposited on amorphous substrates,” Thin Solid Films 217, 7–16 (1992). [CrossRef]
  17. U. Kaiser, N. Kaiser, P. Weiβbrodt, D. Mademann, E. Hacker, “Initial layer growth in thin MgF2-, LaF2-, CaF2-, and LiF-films,” Le vide le Coches Mines Suppl. 259, 104–106 (1991).
  18. U. Kaiser, M. Adamik, G. Sáfrén, P. B. Barnd, S. Laux, W. Richter, “Growth structure investigations of MgF2 and NdF3 MBD films on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited