OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 31 — Nov. 1, 1996
  • pp: 6249–6252

Optical properties of dual-core hollow waveguides

Christopher D. Rabii and James A. Harrington  »View Author Affiliations


Applied Optics, Vol. 35, Issue 31, pp. 6249-6252 (1996)
http://dx.doi.org/10.1364/AO.35.006249


View Full Text Article

Enhanced HTML    Acrobat PDF (459 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new type of hollow glass waveguide has been fabricated that transmits radiation from visible to infrared wavelengths with low loss. The broadband transmission is achieved with a structure consisting of two distinct core regions; a silica annulus for transmission of wavelengths from 0.3 to 2.0 mm and a hollow core for transmission from 2.0 to 12.0 mm. Losses in the silica core at 633 nm are 0.3 dB/m. Losses in the 575-mm bore hollow core at 10.6 μm are 0.6 dB/m. Bending loss is negligible for radiation transmitted in the solid silica core, whereas the hollow guide loss exhibits a 1/R dependence. The dual-core waveguide can transmit broadband radiation, is rugged and flexible, and therefore, is a good candidate for medical or sensor applications.

© 1996 Optical Society of America

History
Original Manuscript: February 26, 1996
Revised Manuscript: February 26, 1996
Published: November 1, 1996

Citation
Christopher D. Rabii and James A. Harrington, "Optical properties of dual-core hollow waveguides," Appl. Opt. 35, 6249-6252 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-31-6249


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Harrington, ed., Infrared Fiber Optics, Milestone Series (Proc. SPIE, Bellingham, Wash., 1990), Vol. MS 9, pp. 409–470, 527–537.
  2. R. L. Kozodoy, R. H. Micheels, J. A. Harrington, “Small-bore hollow waveguide infrared absorption cells for gas sensing,” Appl. Spectrosc. 30, 319–321 (1996).
  3. C. C. Gregory, J. A. Harrington, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990). [CrossRef] [PubMed]
  4. T. Abel, J. A. Harrington, P. R. Foy, “Optical properties of hollow calcium aluminate glass waveguides,” Appl. Opt. 33, 3919–3922 (1994). [CrossRef] [PubMed]
  5. Y. Matsuura, M. Miyagi, “Bending losses and beam profiles of zinc selenide-coated silver waveguides for CO2 laser light,” Appl. Opt. 31, 6441–6445 (1992). [CrossRef] [PubMed]
  6. E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  7. S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991). [CrossRef]
  8. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984). [CrossRef]
  9. N. Croitoru, J. Dror, E. Goldenberg, D. Mendelovic, I. Gannot, “Hollow fiber waveguide and method of making same,” U.S. Patent4,930,863 (5June1990).
  10. R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992). [CrossRef]
  11. T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994). [CrossRef] [PubMed]
  12. J. A. Harrington, Y. Matsuura, “Review of Hollow Waveguide Technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).
  13. Y. Matsuura, J. A. Harrington, “Infrared hollow glass waveguides fabricated by chemical vapor deposition,” Opt. Lett. 20, 2078–2080 (1995). [CrossRef] [PubMed]
  14. Y. Matsuura, A. Hongo, M. Miyagi, “Dielectric-coated metallic hollow waveguide for 3 μm Er:YAG, 5 mm CO, and 10.6 mm CO2 laser light transmission,” Appl. Opt. 29, 2213–2217 (1990). [CrossRef] [PubMed]
  15. Y. Matsuura, T. C. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995). [CrossRef] [PubMed]
  16. Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1689 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited