OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 31 — Nov. 1, 1996
  • pp: 6278–6288

Modeling fluorescence collection from single molecules in microspheres: effects of position, orientation, and frequency

Steven C. Hill, Hasan I. Saleheen, Michael D. Barnes, William B. Whitten, and J. Michael Ramsey  »View Author Affiliations

Applied Optics, Vol. 35, Issue 31, pp. 6278-6288 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (652 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present calculations of fluorescence from single molecules (modeled as damped oscillating dipoles) inside a dielectric sphere. For an excited molecule at an arbitrary position within the sphere we calculate the fluorescence intensity collected by an objective in some well-defined detection geometry. We find that, for the cases we model, integration over the emission linewidth of the molecule is essential for obtaining representative results. Effects such as dipole position and orientation, numerical aperture of the collection objective, sphere size, emission wavelength, and linewidth are examined. These results are applicable to single-molecule detection techniques employing microdroplets.

© 1996 Optical Society of America

Original Manuscript: January 16, 1996
Revised Manuscript: April 24, 1996
Published: November 1, 1996

Steven C. Hill, Hasan I. Saleheen, Michael D. Barnes, William B. Whitten, and J. Michael Ramsey, "Modeling fluorescence collection from single molecules in microspheres: effects of position, orientation, and frequency," Appl. Opt. 35, 6278-6288 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Detecting single molecules in liquids,” Anal. Chem. 67, 418A–423A (1995) and references cited therein. [CrossRef]
  2. M. D. Barnes, K. C. Ng, W. B. Whitten, J. M. Ramsey, “Detection of single rhodamine 6G molecules in levitated microdroplets,” Anal. Chem. 65, 2360–2365 (1993). [CrossRef]
  3. For a review, see S. C. Hill, R. K. Chang, “Nonlinear optics in droplets,” in Studies in Classical and Nonlinear Optics, O. Keller, ed. (Nova, Commack, New York, 1995), pp. 171–242.
  4. H. M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra,” Opt. Lett. 9, 273–275 (1984). [CrossRef] [PubMed]
  5. M. F. Buehler, T. M. Allen, E. J. Davis, “Microparticle Raman spectroscopy of multicomponent aerosols,” J. Colloid Interface Sci. 146, 79–89 (1991). [CrossRef]
  6. A. Serpenguzel, G. Chen, R. K. Chang, “Stimulated Raman scattering of aqueous droplets containing ions: concentration and size determination,” Partic. Sci. Technol. 8, 1–10 (1990).
  7. L. M. Folan, S. Arnold, S. D. Druger, “Enhanced energy transfer within a microparticle,” Chem. Phys. Lett. 118, 322–327 (1985). [CrossRef]
  8. H. Chew, P. J. McNulty, M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A. 13, 396–404 (1976). [CrossRef]
  9. S. Druger, P. J. McNulty, “Radiation patterns of fluorescence from molecules embedded in small particles: general case,” Appl. Opt. 22, 75–82 (1983). [CrossRef] [PubMed]
  10. D. S. Benincasa, P. W. Barber, J. Z. Zhang, W.-F. Hsieh, R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26, 1348–1356 (1987). [CrossRef] [PubMed]
  11. J. A. Lock, E. A. Hovenac, “Internal caustic structure of illuminated liquid droplets,” J. Opt. Soc. Am. A 8, 1541–1549 (1991). [CrossRef]
  12. D. Q. Chowdury, P. W. Barber, S. C. Hill, “Energy density distribution inside large nonabsorbing spheres via Mie theory and geometrical optics,” Appl. Opt. 31, 3518–3523 (1992). [CrossRef]
  13. S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 1–61.
  14. P. Chylek, “Resonance structure of Mie scattering: distances between resonances,” J. Opt. Soc. Am. A 7, 1609–1613 (1990). [CrossRef]
  15. R. Fuchs, K. L. Kliewar, “Optical modes of vibration in an ionic crystal sphere,” J. Opt. Soc. Am. 58, 319–330 (1968). [CrossRef]
  16. M. D. Barnes, W. B. Whitten, S. Arnold, J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992). [CrossRef]
  17. M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Enhanced fluorescence yields from cavity quantum electrodynamic effects in microdroplets,” J. Opt. Soc. Am. B 11, 1297–1304 (1994). [CrossRef]
  18. H. M. Lai, P. T. Leung, K. Young, “Electromagnetic decay into a narrow resonance,” Phys. Rev. A 37, 1597 (1988);S. C. Ching, H. M. Lai, K. Young, “Dielectric microspheres as optical cavities: thermal spectrum and density of states,” J. Opt. Soc. Am. B 4, 1995–2003 (1987);S. C. Ching, H. M. Lai, K. Young, “Dielectric microspheres as optical cavities: Einstein A and B coefficients and level shift,” J. Opt. Soc. Am. B 4, 2004–2009 (1987). [CrossRef] [PubMed]
  19. H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987);H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988). [CrossRef] [PubMed]
  20. H.-B. Lin, J. D. Eversole, C. D. Merrit, A. J. Campillo, “Cavity-modified spontaneous emission rates in liquid micro-droplets,” Phys. Rev. A 45, 6756–6760 (1992). [CrossRef] [PubMed]
  21. For a comprehensive review, see R. K. Chang, A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996), Chap. 1.
  22. P. C. Becker, H. L. Fragnito, J. Y. Bigot, C. H. Brito Cruz, R. L. Fork, C. V. Shank, “Femtosecond photon echoes from molecules in solution,” Phys. Rev. Lett. 63, 505–508 (1989). [CrossRef] [PubMed]
  23. M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996). [CrossRef] [PubMed]
  24. The most commonly used solvent in single-molecule detection experiments is water where the rotational diffusion time is of the order of a few picoseconds. Because the excited state lifetime is ∼3 ns, an orientational average is clearly appropriate. In these calculations, we also use the value of 1.34 as the refractive index of water.
  25. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961), pp. 116–117.
  26. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, New York, 1995), pp. 20–28 and Chap. 7.
  27. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), pp. 79–91, 189–192. [CrossRef]
  28. S. C. Hill, H. I. Saleheen, K. A. Fuller, “Volume current method for modeling light scattering by inhomogeneously perturbed spheres,” J. Opt. Soc. Am. A 12, 905–915 (1995). [CrossRef]
  29. A. Yariv, Optical Electronics (Saunders, Philadelphia, Pa., 1991), pp. 150–153.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited