OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 32 — Nov. 10, 1996
  • pp: 6304–6319

Excimer laser use for microetching computer-generated holographic structures

N. A. Vainos, S. Mailis, S. Pissadakis, L. Boutsikaris, P. J. M. Parmiter, P. Dainty, and T. J. Hall  »View Author Affiliations


Applied Optics, Vol. 35, Issue 32, pp. 6304-6319 (1996)
http://dx.doi.org/10.1364/AO.35.006304


View Full Text Article

Enhanced HTML    Acrobat PDF (7866 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Excimer-laser microetching of a variety of materials is applied to the fabrication of surface-relief optical microstructures of arbitrary morphology, with particular emphasis on computer-generated holographic structures. High-definition, high-radiation-intensity selective laser ablative etching in conjunction with step-and-repeat (period) replication or raster (pixel) scanning is used. To support such developments, the characteristic etching properties of a wide range of solid materials, from metals to semiconductors and polymers, are studied. Optical-interconnect and generic object holograms are produced by means of this alternative one-step holographic information-recording method.

© 1996 Optical Society of America

History
Original Manuscript: October 16, 1995
Revised Manuscript: May 17, 1996
Published: November 10, 1996

Citation
N. A. Vainos, S. Mailis, S. Pissadakis, L. Boutsikaris, P. J. M. Parmiter, P. Dainty, and T. J. Hall, "Excimer laser use for microetching computer-generated holographic structures," Appl. Opt. 35, 6304-6319 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-32-6304


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Rossi, G. L. Bona, R. E. Kunz, “Arrays of anamorphic phase-matched Fresnel elements for diode-to-fiber coupling,” Appl. Opt. 34, 2483–2488 (1995). [CrossRef] [PubMed]
  2. D. G. Stewart, “Head-up display systems,” (patent), Appl. Opt. 30, 4009 (1991).
  3. S. Ogata, Y. Ito, “Laser-diode collimating light sources using micro-Fresnel lenses,” Opt. Eng. 33, 3656–3661 (1994). [CrossRef]
  4. M. Duparre, M. A. Golub, B. Ludge, V. S. Pavelyev, V. A. Soifer, G. V. Uspleniev, S. G. Volotovskii, “Investigation of computer-generated diffractive beam shapers for flattening of single-modal CO2 laser beams,” Appl. Opt. 34, 2489–2497 (1995). [CrossRef] [PubMed]
  5. M. E. Motamedi, A. P. Andrews, W. J. Gunning, M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616–3623 (1994). [CrossRef]
  6. W. Goltsos, M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990). [CrossRef]
  7. J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989). [CrossRef] [PubMed]
  8. H. P. Herzig, R. Dandliker, “Holographic optical elements for use with semiconductor lasers,” in International Trends in Optics, J. W. Goodman, ed., 1991, pp. 57–75.
  9. B. R. Brown, A. W. Lohmann, “Computer-generated binary holograms,” IBM J. of Res. Technol. 13, 160–168 (1969). [CrossRef]
  10. W. H. Lee, “Binary computer-generated holograms,” Appl. Opt. 18, 3661–3669 (1979). [CrossRef] [PubMed]
  11. M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994). [CrossRef]
  12. H. Dammann, K. Gortler, “High efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971). [CrossRef]
  13. M. R. Feldman, C. C. Guest, “Iterative encoding of highefficiency holograms for generation of spot arrays,” Opt. Lett. 14, 479–481 (1989). [CrossRef] [PubMed]
  14. A. G. Kirk, A. K. Powell, T. J. Hall, “A generalisation of the error diffusion method for binary computer generated hologram design,” Opt. Commun. 92, 12–18 (1992). [CrossRef]
  15. L. d'Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972). [CrossRef]
  16. S. M. Arnold, “Electron beam fabrication of computer generated holograms,” Opt. Eng. 24, 803–807 (1985).
  17. S. C. Baber, “Application of high-resolution laser writers to computer generated holograms and binary diffractive optics,” in Holographic Optics: Optically and Computer Generated, Proc. SPIE 1052, 66–76 (1989).
  18. G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
  19. T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, Proc. SPIE 1211, 191–197 (1990).
  20. E. Pawlowski, B. Kuhlow, “Antireflection-coated diffractive optical elements fabricated by thin-film deposition,” Opt. Eng. 33, 3537–3546 (1994). [CrossRef]
  21. I. Hanyu, S. Asai, K. Kosemura, H. Ito, M. Nunokawa, M. Abe, “New phase-shifting mask with highly transparent SiO2 phase shifters,” in Optical/Laser Microlithography, Proc. SPIE 1264, 167–177 (1990).
  22. K. S. Urquhart, R. Stein, S. H. Lee, “Computer-generated holograms fabricated by direct write of positive electron-beam resist,” Opt. Lett. 18, 308–310 (1993). [CrossRef] [PubMed]
  23. D. Bauerle, “Chemical processing with lasers: recent developments,” Appl. Phys. B 46, 261–271 (1988). [CrossRef]
  24. M. Mullenborn, H. Dirac, J. W. Petersen, “Threedimensional nanostructures by direct laser etching of Si,” Appl. Surf. Sci. 86, 568–576 (1995). [CrossRef]
  25. L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Technol. 13, 150–155 (1969). [CrossRef]
  26. M. Larsson, M. Ekberg, F. Nikolajeff, S. Hard, “Successive development optimization of resist kinoforms manufactured with direct-writing e-beam lithography,” Appl. Opt. 33, 1176–1179 (1994). [CrossRef] [PubMed]
  27. K. Jain, C. G. Wilson, B. J. Lin, “Ultrafast high-resolution contact lithography with excimer lasers,” IBM J. Res. Technol. 26, 151–159 (1982). [CrossRef]
  28. R. T. Kerth, K. Jain, “Excimer laser projection lithography,” Appl. Opt. 23, 648–650 (1984). [CrossRef] [PubMed]
  29. F. G. Bachmann, “Large-scale industrial application for excimer lasers: via hole drilling by photoablation,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 18–29 (1990).
  30. J. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994). [CrossRef]
  31. S. Mihailov, S. Lazare, “Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon,” Appl. Opt. 32, 6211–6218 (1993). [CrossRef] [PubMed]
  32. J. M. Trewhella, M. M. Oprysko, “Total internal reflection mirrors fabricated in polymeric optical waveguides via excimer laser ablation,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 64–72 (1990).
  33. B. L. Booth, J. L. Hohman, K. B. Keating, J. E. Marchegiano, S. L. Witman, “Excimer laser micromachining for passive fiber coupling to polymeric waveguide devices,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 57–63 (1990).
  34. M. A. Stiller, “Excimer laser fabrication of waveguide devices,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 73–78 (1990).
  35. N. A. Vainos, S. Mailis, S. Pissadakis, P. Dainty, T. J. Hall, “Excimer laser micromachining: materials reference library and microetching of holographic optical interconnect structures,” paper presented at the Fourth International Conference on Holographic Systems, Components, and Applications, September 1993, Neuchatel, Switzerland (postdeadline paper).
  36. L. Boutsikaris, S. Mailis, N. Madamopoulos, S. Pissadakis, A. Petrakis, N. A. Vainos, P. Dainty, P. J. Parmiter, T. J. Hall, “Computer-generated holographic diffractive structures fabricated by direct excimer laser microetching,” in Laser-Induced Thin Film Processing, J. J. Dubowski, ed., Proc. SPIE2403, 448–455 (1995).
  37. N. A. Vainos, S. Mailis, L. Boutsikaris, S. Pissadakis, C. Fotakis, “Etching of optical microstructures and uses,” Greek patent no. GR 1002163, March1996;European patent no. 96600004.4 (pending).
  38. S. V. Babu, G. C. D'Couto, F. D. Egitto, “Excimer laser induced ablation of polyetheretherketone, polyimide, and polytetrafluoroethylene,” J. Appl. Phys. 72, 692–698 (1992), and references therein. [CrossRef]
  39. B. Luk'yanchuk, N. Bityurin, S. Anisimov, D. Bauerle, “The role of excited species in UV-laser materials ablation,” Appl. Phys. A 57, 367–374 (1993). [CrossRef]
  40. European Strategic Programme for Research and Development in Information Technology (ESPRIT), “Excimer laser micromachining: Materials reference library,” Rep. D2 (Commission of the European Union, 1993).
  41. B. K. Jennison, J. P. Allebach, D. W. Sweeney, “Iterative approaches to computer generated holography,” Opt. Eng. 28, 629–637 (1989).
  42. H. Szu, “Neural networks for computing,” AIP Conf. Proc. 151, 420–425 (1986). [CrossRef]
  43. K.-H. Brenner, M. Kufner, S. Kufner, J. Moisel, A. Muller, S. Sinzinger, M. Testorf, J. Gottert, J. Mohr, “Application of three-dimensional micro-optical components formed by lithography, electroforming, and plastic molding,” Appl. Opt. 32, 6464–6469 (1993). [CrossRef] [PubMed]
  44. The original relic, dated to circa 1600 B.C., was found in the ruins of the ancient city of Festos, in Crete, Greece. The diameter of the clay disk is approximately 16 cm. The hieroglyphics, probably, but not yet officially, identified as a Linear-A script, were impressed onto the wet clay probably by means of a metal stamp: a very ancient precursor of printing.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited