OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 32 — Nov. 10, 1996
  • pp: 6320–6330

Parallel fuzzy inference with an optoelectronic H-tree architecture

Gary C. Marsden, Brita Olson, and Sadik C. Esener  »View Author Affiliations

Applied Optics, Vol. 35, Issue 32, pp. 6320-6330 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (450 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fuzzy inference is a method of reasoning with imprecise information. The mathematical operations of fuzzy inference can be stated in terms of generalized vector algebra, in which multiplication and summation are generalized to min and max operations. An optoelectronic H-tree architecture is ideally suited to perform these generalized vector operations in parallel and requires only a simple imaging optical interconnection. Appropriate data encodings and electronic circuitry permit large scale, pipe-lined systems.

© 1996 Optical Society of America

Original Manuscript: February 14, 1996
Revised Manuscript: July 29, 1996
Published: November 10, 1996

Gary C. Marsden, Brita Olson, and Sadik C. Esener, "Parallel fuzzy inference with an optoelectronic H-tree architecture," Appl. Opt. 35, 6320-6330 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. A. Zadeh, “Fuzzy sets,” Inf. Control 6, 338–353 (1965). [CrossRef]
  2. G. J. Klir, T. A. Folger, Fuzzy Sets, Uncertainty, and Information (Prentice-Hall, Englewood Cliffs, N.J., 1988).
  3. M. Sugeno, “An introductory survey of fuzzy control,” Inf. Sci. 36, 59–83 (1985). [CrossRef]
  4. A. Kandel, Fuzzy Techniques in Pattern Recognition (Wiley, New York, 1982).
  5. L. A. Zadeh, “The role of fuzzy logic in the management of uncertainty in expert systems,” Fuzzy Sets Syst. 11, 199–227 (1983). [CrossRef]
  6. M. Togai, H. Watanabe, “Expert system on a chip: an engine for real-time approximate reasoning,” IEEE Expert 1, 56–62 (1986). [CrossRef]
  7. M. A. Eshera, S. C. Barash, “Parallel rule-based fuzzy inference on mesh-connected systolic arrays,” IEEE Expert 4, 27–35 (1989). [CrossRef]
  8. H. Watanabe, J. R. Symon, W. D. Detloff, K. E. Young, “VLSI fuzzy chip and inference accelerator board systems,” in Fuzzy Logic for the Management of Uncertainty, L. Zadeh, J. Kacprzyk, eds. (Wiley, New York, 1992).
  9. L. Liu, “Optical implementation of parallel fuzzy logic,” Opt. Commun. 73, 183–187 (1989). [CrossRef]
  10. G. C. Marsden, B. Olson, S. C. Esener, S. H. Lee, “Optoelectronic fuzzy logic system,” in Optical Computing, Vol. 6 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991) p. 212.
  11. S. Zhang, S. Lin, C. Chen, “Improved model of optical fuzzy associative memory,” Opt. Lett. 18, 1837–1839 (1993). [CrossRef] [PubMed]
  12. Z. Zhu, L. Liu, “Optical cellular continuous logic array for gray-scale image processing,” Appl. Opt. 32, 3676–3683 (1993). [CrossRef] [PubMed]
  13. S. Zhou, S. Campbell, W. Wu, P. Yeh, “Polarization- and space-encoded parallel optical fuzzy logic processor,” Opt. Lett. 18, 1831–1833 (1993). [CrossRef] [PubMed]
  14. H. Itoh, S. Mukai, H. Yajima, “Optoelectronic fuzzy inference system based on beam-scanning architecture,” Appl. Opt. 33, 1485–1490 (1994). [CrossRef] [PubMed]
  15. T. Konishi, J. Tanida, Y. Ichioka, “Visual-area coding technique (VACT): optical parallel implementation of fuzzy logic and its visualization with the digital-halftoning process,” Appl. Opt. 34, 3097–3102 (1995). [CrossRef] [PubMed]
  16. R. Lopez de Mantaras, Approximate Reasoning Models (Halsted, New York, 1990).
  17. G. C. Marsden, F. Kiamilev, S. Esener, S. H. Lee, “Highly parallel consistent labeling algorithm suitable for optoelectronic implementation,” Appl. Opt. 30, 185–194 (1991). [CrossRef] [PubMed]
  18. L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning—I,” Inf. Sci. 8, 199–249 (1975). [CrossRef]
  19. L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning—II,” Inf. Sci. 8, 301–357 (1975). [CrossRef]
  20. L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning—III,” Inf. Sci. 9, 43–80 (1975). [CrossRef]
  21. A. V. Krishnamoorthy, G. Yayla, S. C. Esener, “A scalable neural system using free-space optical interconnects,” IEEE Trans. Neural Net. 3, 404–413 (1992). [CrossRef]
  22. S. Esener, F. McCormick, “Current status of optical storage systems,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science, Vols. 15 and 16 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995).
  23. C. Mead, M. Rem, “Cost and performance of VLSI computing structures,” IEEE J. Solid-State Circuits SC-14, 455–462 (1979). [CrossRef]
  24. G. C. Marsden, “Optoelectronic array processors with applications in machine intelligence and database management,” Ph. D. dissertation (University of California, San Diego, La Jolla, Calif., 1993).
  25. C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esener, G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 34, 3103–3115 (1995). [CrossRef] [PubMed]
  26. M. Hansen, D. Shih, C. Fan, S. Esener, W. Cheng, E. Yablonovitch, U. Efron, “16×16 SLM with silicon CMOS drivers and III-V modulators,” in Spatial Light Modulators and Applications, Vol. 9 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 5.
  27. S. Esener, “Optical memory systems for 3-D computing,” presented at the Lasers and Electro-Optics Society (LEOS) Annual Meeting, San Francisco, Calif., 16 November 1995.
  28. P. J. Marchand, A. V. Krishnamoorthy, K. S. Urquhart, P. Ambs, S. C. Esener, S. H. Lee, “Motionless-head parallel readout optical disk,” Appl. Opt. 32, 190–203 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited