OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 32 — Nov. 10, 1996
  • pp: 6331–6353

Acousto-optic photonic crossbar switch. Part I: design

Robert R. McLeod, Kuang-yi Wu, Kelvin Wagner, and Robert T. Weverka  »View Author Affiliations

Applied Optics, Vol. 35, Issue 32, pp. 6331-6353 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (1599 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the design of a 12 × 12 photonic crossbar interconnection network constructed using a single three-dimensional acousto-optic crystal. Previous crossbars based on bulk acousto-optic cells require multichannel deflectors with one deflector per optical input; in contrast the design presented here angularly multiplexes these independent deflectors into a single-transducer acousto-optic device. A Fourier-optics analysis of an acoustically lossy Bragg deflector is coupled to a momentum-space analysis that permits the derivation of complete design equations for the switch. As a concrete example, the complete design of a 12 × 12 crossbar is presented. Finally, a coupled-mode analysis of the first- and second-order diffractions in the angularly multiplexed Bragg cell reveals the fundamental efficiency bounds of the switching network.

© 1996 Optical Society of America

Original Manuscript: January 16, 1996
Revised Manuscript: May 3, 1996
Published: November 10, 1996

Robert R. McLeod, Kuang-yi Wu, Kelvin Wagner, and Robert T. Weverka, "Acousto-optic photonic crossbar switch. Part I: design," Appl. Opt. 35, 6331-6353 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).
  2. H. Jordan, D. Lee, K. Lee, “Serial array time slot inter-changers and optical implementations,” IEEE Trans. Comput. 43, 1309–1318 (1994). [CrossRef]
  3. R. T. Weverka, K. Wagner, R. McLeod, K. Wu, “Low-loss acousto-optic photonic switch,” in N. J. Berg, J. M. Pelegrino, eds., Acousto-Optic Signal Processing: Theory and Implementation, 2nd ed., N. J. Berg, J. M. Pelegrino, eds., (Marcel Dekker, New York, 1995), pp. 479–573.
  4. D. J. Blumenthal, R. J. Feuerstein, J. R. Sauer, “First demonstration of multihop all-optical packet switching,” IEEE Photon. Technol. Lett. 6, 457–460, (1994). [CrossRef]
  5. A. Dias, R. F. Kalman, J. Goodman, A. Sawchuk, “Fiber optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).
  6. R. F. Kalman, L. Kazovsky, J. Goodman, “Space division switches based on semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 4, 1048–1051 (1992). [CrossRef]
  7. M. Yamaguchi, T. Yamamoto, K.-I. Yukimatsu, “Experimental investigation of a digital free-space photonic switch that uses exciton absorption reflection switch arrays,” Appl. Opt. 33, 1337–1344 (1994). [CrossRef] [PubMed]
  8. M. Born, E. Wolf, Principles of optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, New York, 1959).
  9. R. I. MacDonald, D. Lam, “Broadband matrix switches: electro-optic or optoelectronic,” Opt. Quantum. Electron. 18, 273–277 (1989). [CrossRef]
  10. L. McCaughan, “Long wavelength titanium doped lithium niobate directional coupler optical switches and switch arrays,” Opt. Eng. 24, 241–243 (1985).
  11. L. McCaughan, G. A. Bogert, “4 × 4 Ti:LiNbO3 integrated-optical crossbar switch array,” Appl. Phys. Lett. 47, 348–350 (1985). [CrossRef]
  12. P. Granestrand, B. Lagerstrom, P. Svensson, L. Thylen, B. Stoltz, K. Bergvall, J.-E. Falk, H. Olofsson, “Integrated optics 4 × 4 switch matrix with digital optical switches,” Electron. Lett. 26, 4–5 (1990). [CrossRef]
  13. P. J. Duthie, M. J. Wale, “16 × 16 single chip optical switch array in lithium niobate,” Electron. Lett. 27, 1265–1266 (1991). [CrossRef]
  14. T. Sawano, S. Suzuki, H. Nishimoto, “A high-capacity photonic space-division switching system for broadband networks,” J. Lightwave Technol. 13, 335–341 (1995). [CrossRef]
  15. Q. Chen, Y. Chiu, D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994). [CrossRef]
  16. M. L. Wilson, D. L. Fleming, F. R. Dropps, “A fiber optic matrix switchboard using acousto-optic Bragg cells,” in Components for Fiber Optic Applications III and Coherent Light-wave Communications, P. M. Kopera, F. R. Sumak, eds., Proc. SPIE988, 56–62 (1988).
  17. W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–190 (1990). [CrossRef]
  18. D. O. Harris, A. Vanderlugt, “Acousto-optic photonic switch,” Opt. Lett. 14, 1177–1179 (1989). [CrossRef] [PubMed]
  19. D. O. Harris, “Multichannel acousto-optic crossbar switch,” Appl. Opt. 30, 4245–4256 (1991). [CrossRef] [PubMed]
  20. D. O. Harris, A. VanderLugt, “Multichannel acousto-optic crossbar switch with arbitrary signal fan-out,” Appl. Opt. 31, 1684–1686 (1992). [CrossRef] [PubMed]
  21. E. S. Maniloff, K. M. Johnson, “Dynamic holographic interconnections using static holograms,” Opt. Eng. 29, 225–229 (1990). [CrossRef]
  22. J. Wilde, R. McRuer, L. Hesselink, J. Goodman, “Dynamic holographic interconnections using photorefractive crystals,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 200–208 (1987).
  23. S. Weiss, M. Segev, S. Sternklar, B. Fischer, “Photorefractive dynamic optical interconnects,” Apl. Opt. 27, 3422–3428 (1988). [CrossRef]
  24. D. R. Pape, P. Wasilousky, M. Krainak, “A high performance apodized phased array Bragg cell,” in Optical Technology for Microwave Applications III, Proc. SPIE 789, 116–126 (1987).
  25. D. R. Pape, “Multichannel Bragg cells: design, performance, and applications,” Opt. Eng. 31, 2148–2158 (1992). [CrossRef]
  26. H. Laor, “Piezoelectric aparatus for positioning optical fibers,” U.S. Patent4,512,036, 16April1985.
  27. R. R. McLeod, “Spectral-domain analysis and design of three-dimensional optical switching and computing systems,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1995).
  28. D. L. Hecht, “Spectrum analysis using acousto-optic devices,” Opt. Eng.461–466 (1977).
  29. W. H. Press, B. P. Flannery, S. A. Teulkolsky, W. T. Verrerling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1986).
  30. S. Wofford, G. Petrie, D. L. Hecht, “Polarization effects in shear wave tellurium dioxide acousto-optic devices,” in Active Optical DevicesJ. Tracy, ed., Proc. SPIE202, 180–185 (1979).
  31. J. Xu, R. Stroud, Acousto-Optic Devices (Wiley, New York, 1992).
  32. H. S. Hinton, An Introduction to Photonic Switching Fabrics, (Plenum, New York, 1993).
  33. I. C. Chang, “Design of wideband acousto-optic Bragg cells,” in Bragg Signal Processing and Output Devices, T. J. Kooij, B. V. Markevitch, eds., Proc. SPIE352, 34–41 (1983).
  34. G. Elston, “Optically and acoustically rotated slow shear Bragg cells in TeO2,” in Advances in Optical Information Processing III, D. R. Pape, ed., Proc. SPIE936, 95–101 (1988).
  35. T. Yano, M. Kawabuchi, A. Fukumoto, A. Wantanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975). [CrossRef]
  36. P. Guilfoyle, D. Hecht, D. Steinmetz, “Joint-transform time-integrating acousto-optic correlator for chirp spectrum analysis,” in Active Optical Devices, J. Tracy, ed., Proc. SPIE202, 154–162 (1979).
  37. B. A. Auld, Acoustic Fields and Waves in Solids (Krieger, Malabar, Fla., 1990).
  38. D. L. Hecht, “Multifrequency acousto-optic diffraction,” IEEE Trans. Sonics Ultrason. 245, 7–18 (1977). [CrossRef]
  39. I. Chang, R. T. Weverka, “Multifrequency acousto-optic diffraction in wideband Bragg cells,” IEEE Ultrason. Symp. Proc. 2, 445–448 (1983).
  40. K.-Y. Wu, “Acousto-optic fiber crossbar switches,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1995).
  41. M. Kufner, S. Kufner, P. Chavel, M. Frank, “Monolithic integration of microlens arrays and fiber holder arrays in poly(methyl methacrylate) with fiber self-centering,” Opt. Lett. 20, 276–278 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited