OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 32 — Nov. 10, 1996
  • pp: 6397–6416

Performance analysis of self-electro-optic-effect-device-based (SEED-based) smart-pixel arrays used in data sorting

M. P. Y. Desmulliez, B. S. Wherrett, A. J. Waddie, J. F. Snowdon, and J. A. B. Dines  »View Author Affiliations

Applied Optics, Vol. 35, Issue 32, pp. 6397-6416 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (711 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance factors associated with self-electro-optic-effect-device- (SEED-) based smart-pixel arrays are analyzed in terms of semiconductor technology and pixel complexity. The sorting task is chosen as a practical example. Complementary metal-oxide semiconductor (CMOS)–SEED 2 × 2 self-routing nodes operated with quasi-cw-mode lasers are shown to provide the maximum processing power and on-or off-chip communication rate. The need for new front-end amplifiers for the smart-pixel technology is emphasized.

© 1996 Optical Society of America

Original Manuscript: February 20, 1996
Revised Manuscript: June 3, 1996
Published: November 10, 1996

M. P. Y. Desmulliez, B. S. Wherrett, A. J. Waddie, J. F. Snowdon, and J. A. B. Dines, "Performance analysis of self-electro-optic-effect-device-based (SEED-based) smart-pixel arrays used in data sorting," Appl. Opt. 35, 6397-6416 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Differential optical pnpn switch operating at 16 MHz with 250 fJ optical input energy,” Appl. Phys. Lett. 65, 19–21 (1994). [CrossRef]
  2. H. S. Hinton, “Architectural considerations for photonic switching networks,” IEEE J. Select. Areas Commun. 6, 1209–1226 (1988). [CrossRef]
  3. S. R. Forrest, H. S. Hinton, “Introduction to the special issue on smart pixels,” IEEE J. Quantum Electron. 29, 598–599 (1993).
  4. M. P. Y. Desmulliez, F. A. P. Tooley, J. A. B. Dines, N. L. Grant, D. A. Baillie, B. S. Wherrett, P. W. Foulk, S. Ashcroft, P. Black, “Perfect-shuffle interconnected bitonic sorter: optoelectronic design,” Appl. Opt. 34, 5077–5090 (1995). [CrossRef] [PubMed]
  5. F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” Appl. Opt. 33, 1601–1618 (1994). [CrossRef] [PubMed]
  6. M. K. Hibbs-Brenner, S. D. Mukherjee, B. L. Grung, J. Skogen, “GaAs OEICs for opto-electronic smart pixels,” in LEOS Summer Topical Meeting Digest on Smart Pixels, 1993 (Institute of Electrical and Electronics Engineers, Lasers and Optoelectronics Society, New York, 1993), pp. 26–27.
  7. F. E. Kiamilev, P. J. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronics and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991). [CrossRef]
  8. A. V. Krishnamoorthy, P. J. Marchand, F. E. Kiamilev, S. C. Esener, “Grain-size considerations for optoelectronic multistage interconnection networks,” Appl. Opt. 31, 5480–5507 (1992). [CrossRef] [PubMed]
  9. D. T. Lu, V. H. Ozguz, P. J. Marchand, A. V. Krishnamoorthy, F. A. Kiamilev, R. Paturi, S. H. Lee, S. C. Esener, “Design trade-offs in optoelectronic parallel processing systems using smart SLM's,” Opt. Quantum Electron. 24, S379–S403 (1992). [CrossRef]
  10. C. W. Stirk, “Cost models of components for free-space optically interconnected systems,” in Photonics for Computers, Neural Networks and Memories, Proc. SPIE 1773, 231–241 (1993).
  11. B. S. Wherrett, J. F. Snowdon, S. Bowman, A. Kashko, “Digital optical circuits for 2-D data processing,” in Optical Computing 1992, Proc. SPIE 1806, 333–346 (1992).
  12. D. A. B. Miller, “Quantum well self-electro-optic-effect devices,” Opt. Quantum Electron. 22, S61–S98 (1990).
  13. A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to opto-electronics smart pixels,” J. Quantum Electron. 29, 655–669 (1993). [CrossRef]
  14. A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “Symmetric self-electro-optic-effect device: optical reset latch, differential logic gate and differential modulator/detector,” J. Quantum Electron. 25, 1929–1936 (1989). [CrossRef]
  15. A. L. Lentine, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, L. A. d'Asaro, “Optical logic using electrically connected quantum well PIN diode modulators and detectors,” Appl. Opt. 29, 2153–2163 (1990). [CrossRef] [PubMed]
  16. T. K. Woodward, L. M. F. Chirovsky, A. L. Lentine, L. A. d'Asaro, E. Laskowski, M. Focht, G. Guth, S. Pei, F. Ren, G. Przybylek, L. Smith, R. Leibenguth, M. Asom, R. Kopf, J. Kuo, M. Feuer, “Operation of a fully integrated GaAs-AlxGa1–xAs FET-SEED: a basic optically addressed integrated circuit,” Photon. Technol. Lett. 4, 616–618 (1992).
  17. M. Goodwin, A. Moseley, M. Kearley, R. Morris, C. Kirkby, J. Thompson, R. Goodfellow, I. Bennion, “Opto-electronic component array for optical interconnection of circuits and subsystems,” J. Light. Technol. 9, 1639–1644 (1991). [CrossRef]
  18. D. Knuth, The art of computer programing, (Addison Wesley, Reading, Massachusetts, 1973), Vol. 3.
  19. J. W. Goodman, “Optics as an interconnect technology,” in Optical Processing and Computing, H. H. Arsenault, T. Szoplik, B. Macukow, eds. (Academic, San Diego, 1989), pp. 1–32.
  20. K. E. Batcher, “Sorting networks and their applications,” in Proceedings of the Spring Joint Computer Conference, Vol. 32 of Proceedings Series (American Federation of Information Processing Societies, Reston, Virginia, 1968), pp. 307–314.
  21. T. J. Cloonan, G. W. Richards, R. L. Morrison, A. L. Lentine, J. L. Sasian, F. B. McCormick, S. J. Hinterlong, H. S. Hinton, “Shuffle-equivalent interconnection topologies based on computer-generated binary phase gratings,” Appl. Opt. 33, 1405–1430 (1994). [CrossRef] [PubMed]
  22. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, W. Y. Jan, “Quantum well carrier sweep-out: relation to electro-absorption and exciton saturation,” J. Quantum Electron. 27, 2281–2295 (1991). [CrossRef]
  23. G. D. Boyd, J. A. Cavaillès, L. M. F. Chirovsky, D. A. B. Miller, “Wavelength dependence of saturation and thermal effects in multiple quantum well modulators,” Appl. Phys. Lett. 63, 1715–1717 (1993). [CrossRef]
  24. T. Sizer, T. K. Woodward, U. Keller, K. Sauer, T. H. Chiu, D. L. Sivco, A. Y. Cho, “Measurement of carrier escape rates, exciton saturation intensity and saturation density in electrically biased multiple-quantum-well modulators,” J. Quantum Electron. 30, 399–407 (1994). [CrossRef]
  25. P. W. Foulk, M. P. Y. Desmulliez, F. A. P. Tooley, J. G. Crowder, N. L. Grant, B. S. Wherrett, “Arrays of processing nodes for massively parallel sorting sorting using optical switching and interconnect,” in Proceedings of the International Conference on ASIC, ASICON (IEEE Beijing Section, Beijing, China, 1994), pp. 201–204.
  26. C. W. Stirk, R. A. Athale, “Sorting with optical compare- and-exchange modules,” Appl. Opt. 27, 1721–1726 (1988). [CrossRef] [PubMed]
  27. M. P. Y. Desmulliez, B. S. Wherrett, J. F. Snowdon, J. A. B. Dines, “Optical, algorithmic and electronic considerations on the desirable ‘smartness’ of optical processing pixels,” in Optical Computing 1994, B. S. Wherrett, P. Chavel, eds., Vol. 139 of Proceedings Series (Institute of Physics, Bristol, UK, 1995), pp. 489–492.
  28. A. C. Walker, M. P. Y. Desmulliez, F. A. P. Tooley, D. T. Neilson, J. A. B. Dines, D. A. Baillie, S. M. Prince, L. C. Wilkinson, M. R. Taghizadeh, P. Blair, J. F. Snowdon, B. S. Wherrett, C. Stanley, F. Pottier, I. Underwood, D. G. Vass, W. Sibbett, M. H. Dunn, “Construction of demonstration parallel optical processors based on CMOS/InGaAs smart pixel technology,” in Massively Parallel Processing Using Optical Interconnections, E. Schenfeld, ed. (IEEE Computer Societies Press, Los Alamos, N.M., 1995), pp. 180–187. [CrossRef]
  29. J. F. Snowdon, A. J. Waddie, B. S. Wherrett, “Efficient deployment of digital processing modules,” in Photonics for Computers, Neural Networks, and Memories, W. J. Miceli, J. A. Neff, S. T. Kowel, eds., Proc. SPIE1773, 193–197 (1992).
  30. A. L. Lentine, D. A. B. Miller, L. M. F. Chirovsky, L. A. D'Asaro, “Optimization of absorption in symmetric self-electro-optic-effect devices: a systems perspective,” J. Quantum Electron. 27, 2431–2439 (1991). [CrossRef]
  31. M. P. Y. Desmulliez, B. S. Wherrett, J. F. Snowdon, “Tolerance analysis of cascaded self-electro-optic-effect device arrays,” Appl. Opt. 33, 1368–1375 (1994). [CrossRef] [PubMed]
  32. D. J. Goodwill, A. C. Walker, C. R. Stanley, M. C. Holland, M. McElhinney, “Improvements in strain-balanced InGaAs/GaAs optical modulators for 1047-nm operation,” Appl. Phys. Lett. 64, 1192–1994 (1994). [CrossRef]
  33. G. D. Boyd, L. M. F. Chirovsky, A. L. Lentine, G. Livescu, “Wavelength optimization of quantum well modulators in smart pixels,” Appl. Opt. 34, 323–332 (1995). [CrossRef] [PubMed]
  34. L. M. Loh, J. L. LoCicero, A. L. Lentine, “S-SEED switching characteristics,” J. Lightwave Technol. 12, 2122–2130 (1994). [CrossRef]
  35. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. 20, 265–275 (1984). [CrossRef]
  36. S. Schmitt-Rink, D. S. Chemla, D. A. B. Miller, “Linear and nonlinear properties of semiconductor quantum wells,” Adv. Phys. 38, 89–188 (1989). [CrossRef]
  37. T. K. Woodward, W. H. Know, B. Toll, A. Vinattieri, M. T. Asom, “Experimental studies of proton-implanted GaAs/Al-GaAs multiple quantum well modulators for low photocurrent applications,” J. Quantum Electron. 16, 2854–2865 (1994). [CrossRef]
  38. A. Yu, M. Krainak, G. Unger, “1047-nm laser diode master oscillator Nd:YLF power amplifier laser system,” Electron. Lett. 29, 678–679 (1993). [CrossRef]
  39. A. L. Lentine, L. M. F. Chirovsky, T. K. Woodward, “Optical energy considerations for diode-clamped smart-pixel optical receivers,” J. Quantum Electron. 30, 1167–1174 (1994). [CrossRef]
  40. T. K. Woodward, A. L. Lentine, L. M. F. Chirovsky, “Experimental sensitivity studies of diode-clamped FET-SEED smart pixel optical receivers,” J. Quantum Electron. 30, 2319–2324 (1994). [CrossRef]
  41. A. L. Lentine, L. M. F. Chirovsky, L. A. D'Asaro, E. Laskowski, S. Pei, M. Focht, J. Freund, G. Guth, R. Leibenguth, L. Smith, T. K. Woodward, “Field-effect transistor self-electro-optic-effect device (FET-SEED) electrically addressed differential modulator array,” Appl. Opt. 33, 2849–2855 (1994). [CrossRef] [PubMed]
  42. B. S. Wherrett, M. P. Y. Desmulliez, J. F. Snowdon, “Operating conditions for symmetric self-electro-optic-effect devices within digital optical circuits,” Opt. Comput. Process. 3, 19–38 (1993).
  43. S. Yu, S. R. Forrest, “Implementations of smart pixels for optoelectronic processors and interconnection systems. 2. SEED-based technology and comparison with optoelectronic gates,” J. Lightwave Technol. 11, 1670–1680 (1993). [CrossRef]
  44. C. R. Jesshope, “The implementation of fast radix-2 transforms on array processors,” IEEE Trans. Comput. 29, 20–27 (1980). [CrossRef]
  45. J. A. B. Dines, Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK (personal communication, 15April1996).
  46. M. Ingels, G. Vanderplas, J. Crols, M. Steyaert, “A CMOS 18-THz-Omega 240 Mb/b transimpedance amplifier and 155 Mb/s LED-driver for low-cost optical fiber links,” IEEE J. Solid State Circuits 29, 1552–1559 (1994). [CrossRef]
  47. N. Tan, S. Eriksson, “Low-power chip-to-chip communication circuits,” Electron. Lett. 30, 1732–1733 (1994). [CrossRef]
  48. J. A. B. Dines, “Smart pixel optoelectronic receiver based on a charge sensitive amplifier design,” IEEE Special Issue on Selected Topics in Quantum Electronics (to be published).
  49. S. I. Long, S. E. Butner, “Gallium arsenide digital integrated circuit design,” McGraw-Hill Series in Electrical Engineering (McGraw-Hill, New York, 1990).
  50. W. S. Marcus, “A CMOS Batcher and Banyan chip set for B-ISDN packet switching,” IEEE J. Solid State Circuits 25, 1426–1432 (1990). [CrossRef]
  51. Vitesse Corporation, “Gallium arsenide 64 × 64 Crosspoint Switch,” Preliminary Data Sheet Part no. VSC864A-2 (Vitesse, San Jose, Calif., 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited