OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 33 — Nov. 20, 1996
  • pp: 6548–6559

Laser-induced incandescence: detection issues

Randall L. Vander Wal  »View Author Affiliations

Applied Optics, Vol. 35, Issue 33, pp. 6548-6559 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (393 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Theoretical predictions suggest that soot particle size and local gas temperature affect both the spectral intensity and the temporal evolution of laser-induced incandescence. A discussion of both the physical structure and the theoretical absorption models of soot aggregates is presented, suggesting that the soot particle size relevant to laser-induced incandescence (LII) is the primary particle size regardless of whether the primary particle exists individually or is assembled into an aggregate. Experimental results of LII measurements in a laminar gas-jet flame with different signal collection strategies for the LII are presented. These results suggest that (a) signal integration during the laser pulse is essential for minimizing particle size and local temperature bias in the LII signal, (b) signal integration times subsequent to the laser pulse produce a size and local gas-temperature-dependent bias in the LII signal with long integration times more sensitive to these effects, and (c) long wavelength detection produces less of a size and local gas-temperature-dependent bias than short wavelength detection.

© 1996 Optical Society of America

Original Manuscript: December 18, 1995
Revised Manuscript: May 21, 1996
Published: November 20, 1996

Randall L. Vander Wal, "Laser-induced incandescence: detection issues," Appl. Opt. 35, 6548-6559 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Dec, A. O. zur Loye, D. L. Siebers, Soot Distribution in D.I. Diesel Engine using 2-D Imaging of Laser-Induced Incandescence, Elastic Scattering, and Flame Luminosity, SAE Tech. Paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991). [CrossRef]
  2. J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, Quantitative Planar Soot Measurements in a D.I. Diesel Engine using Laser-Induced Incandescence and Light Scattering, SAE Tech. Paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993). [CrossRef]
  3. B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 394–395 (1994). [CrossRef]
  4. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” J. Appl. Phys. B 59, 445–452 (1994). [CrossRef]
  5. C. E. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994). [CrossRef]
  6. F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994). [CrossRef] [PubMed]
  7. R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996). [CrossRef]
  8. R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995). [CrossRef]
  9. R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995). [CrossRef]
  10. A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4483 (1977). [CrossRef]
  11. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984). [CrossRef] [PubMed]
  12. D. L. Hofeldt, Real-Time Soot Concentration Measurement Technique for Engine Exhaust Streams, SAE Tech Paper 930079 (Society of Automotive Engineers, Warrendale, Pa., 1993). [CrossRef]
  13. C. J. Dasch, “Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984). [CrossRef] [PubMed]
  14. C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989). [CrossRef]
  15. A. D’Alessio, “Laser light scattering and fluorescence diagnostics of rich flames produced by gaseous and liquid fuels,” in Particulate Carbon, D. C. Siegla, G. W. Smith, eds. (Plenum, New York, 1981).
  16. R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987). [CrossRef]
  17. M. Kerker, The Scattering of Light (Academic, New York, 1969).
  18. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  19. R. Julien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).
  20. J. E. Martin, A. J. Hurd, “Scattering from fractals,” J. Appl. Crystallog. 20, 61–78 (1987). [CrossRef]
  21. U. O. Koylu, G. M. Faeth, “Radiative properties of flame-generated soot,” J. Heat Transfer 115, 409–417 (1993). [CrossRef]
  22. J. C. Ku, K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992). [CrossRef]
  23. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995). [CrossRef] [PubMed]
  24. R. A. Dobbins, R. J. Santoro, H. G. Semerjian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in Twenty-Third Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp.1525–1532.
  25. R. A. Dobbins, R. A. Fletcher, W. Lu, “Laser-microprobe analysis of soot precursor particles and carbonaceous soot,” Combust. Flame 100, 301–309 (1995). [CrossRef]
  26. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983). [CrossRef]
  27. P.-E. Bengtsson, M. Alden, “C2 production and excitation in sooting flames using visible laser radiation: implications for diagnostics in sooting flames,” Combust. Sci. Technol. 77, 307–318 (1991). [CrossRef]
  28. F. Beretta, A. D’Alessio, A. D’Orsi, P. Minutolo, “U.V. and visible laser excited fluorescence from rich premixed and diffusion flames,” Combust. Sci. Technol. 85, 455–470 (1992). [CrossRef]
  29. D. S. Kliger, Ultrasensitive Laser Spectroscopy (Academic, New York, 1983).
  30. V. S. Letokhov, Nonlinear Laser Chemistry: IRMPD (Bristol, New York, 1985).
  31. A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Conditional sampling for fuel and soot in CARS thermometry,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 1747–1754.
  32. E. A. Rolfing, “Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source,” J. Chem. Phys. 89, 6103–6112 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited