OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 33 — Nov. 20, 1996
  • pp: 6585–6598

Three-dimensional radiation transfer modeling in a dicotyledon leaf

Yves M. Govaerts, Stéphane Jacquemoud, Michel M. Verstraete, and Susan L. Ustin  »View Author Affiliations


Applied Optics, Vol. 35, Issue 33, pp. 6585-6598 (1996)
http://dx.doi.org/10.1364/AO.35.006585


View Full Text Article

Enhanced HTML    Acrobat PDF (704 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.

© 1996 Optical Society of America

History
Original Manuscript: November 17, 1995
Revised Manuscript: April 30, 1996
Published: November 20, 1996

Citation
Yves M. Govaerts, Stéphane Jacquemoud, Michel M. Verstraete, and Susan L. Ustin, "Three-dimensional radiation transfer modeling in a dicotyledon leaf," Appl. Opt. 35, 6585-6598 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-33-6585


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. C. Vogelmann, L. O. Bjorn, “Plants as light traps,” Physiol. Plant. 68, 704–708 (1986). [CrossRef]
  2. D. M. Gates, Biophysical Ecology (Springer-Verlag, New York, 1980). [CrossRef]
  3. S. Jacquemoud, F. Baret, “prospect: a model of leaf optical properties spectra,” Remote Sensing Environ. 34, 75–91 (1990). [CrossRef]
  4. M. M. Verstraete, B. Pinty, R. Myneni, “Understanding the biosphere from space: strategies to exploit remote sensing data,” in Physical Measurements and Signatures in Remote Sensing (Val d’Isére, France, 1994), pp. 993–1004.
  5. Y. M. Govaerts, M. M. Verstraete, “Evaluation of the capability of BRDF models to retrieve structural information on the observed target as described by a tridimensional ray tracing code,” in Multispectral and Microwave Sensing of Forestry, Hydrology, and Natural Resources, E. Mougin, K. J. Ranson, J. A. Smith, eds. Proc. SPIE 2314, 9–20 (1994).
  6. T. C. Vogelmann, “Plant tissue optics,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 231–251 (1993). [CrossRef]
  7. J. Verdebout, S. Jacquemoud, G. Schmuck, “Optical properties of leaves: modelling and experimental studies,” in Imaging Spectrometry as a Tool for Environmental Observations, J. Hill, J. Mégier, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 169–191. [CrossRef]
  8. G. Haberlandt, “Optical sense-organs,” in Physiological Plant Anatomy, G. Haberlandt, ed. (Macmillan, London, 1914), pp. 613–631.
  9. H. Gabrys-Mizera, “Model considerations of the light conditions in noncylindrical plant cells,” Photochem. Photobiol. 24, 453–461 (1976). [CrossRef]
  10. R. A. Bone, D. W. Lee, J. M. Norman, “Epidermal cells functioning as lenses in leaves of tropical rain-forest shade plants,” Appl. Opt. 24, 1408–1412 (1985). [CrossRef] [PubMed]
  11. G. Martin, S. A. Josserand, J. F. Bornman, T. C. Volgemann, “Epidermal focussing and the light microenvironment within leaves of Medicago sativa,” Physiol. Plant. 76, 485–492 (1989). [CrossRef]
  12. W. A. Allen, H. W. Gausman, A. J. Richardson, “Willstatter-Stoll theory of leaf reflectance evaluated by ray tracing,” Appl. Opt. 12, 2448–2452 (1973). [CrossRef] [PubMed]
  13. R. Kumar, L. Silva, “Light ray tracing through a leaf cross section,” Appl. Opt. 12, 2950–2954 (1973). [CrossRef] [PubMed]
  14. D. F. Parkhurst, “Internal leaf structure: a three-dimensional perspective,” in On the Economy of Plant Form and Function, T. J. Givnish, ed. (Cambridge U. Press, Cambridge, U.K., 1986), pp. 215–249.
  15. T. C. Vogelmann, G. Martin, “The functional significance of palisade tissue penetration of directional versus diffuse light,” Plant Cell Environ. 16, 65–72 (1993). [CrossRef]
  16. D. F. Parkhurst, “Stereological methods for measuring internal leaf structure variables,” Am. J. Bot. 69, 31–39 (1982). [CrossRef]
  17. L. J. Gibson, M. F. Ashby, Cellular Solids, Structure and Properties (Pergamon, Oxford, 1988).
  18. H. Mohr, P. Schopfer, Plant Physiology (Springer-Verlag, Berlin, 1995).
  19. D. M. Gates, H. J. Keegan, J. C. Schleter, V. R. Weiner, “Spectral properties of plants,” Appl. Opt. 4, 11–20 (1965). [CrossRef]
  20. T. R. Sinclair, M. M. Schreiber, R. M. Hoffer, “Diffuse reflectance hypothesis for the pathway of solar radiation through leaves,” Agron. J. 65, 276–283 (1973). [CrossRef]
  21. H. K. Lichtenthaler, “Chlorophylls and carotenoids: pigments of photosynthetic biomembranes,” Methods Enzymol. 148, 350–382 (1987). [CrossRef]
  22. R. L. Hulbary, “The influence of air spaces on the three-dimensional shapes of cells in Elodea stems, and a comparison with pith cells of Ailanthus,” Am. J. Bot. 31, 561–580 (1944). [CrossRef]
  23. D. W. Thompson, On Growth and Form (Cambridge U. Press, Cambridge, U.K., 1961).
  24. J. A. Romberger, Z. Hejnowicz, J. F. Hill, Plant Structure: Function and Development (Springer-Verlag, Berlin, 1993).
  25. M. E. Mortenson, Geometric Modeling (Wiley, New York, 1985).
  26. H. T. Breece, R. A. Holmes, “Bidirectional scattering characteristics of healthy green soybeans and corn leaves in vivo,” Appl. Opt. 10, 119–127 (1971). [CrossRef]
  27. T. W. Brakke, J. A. Smith, J. M. Harnden, “Bidirectional scattering of light from tree leaves,” Remote Sensing Environ. 29, 175–183 (1989). [CrossRef]
  28. E. A. Walter-Shea, J. M. Norman, B. L. Blad, “Leaf bidirectional reflectance and transmittance in corn and soybean,” Remote Sensing Environ. 29, 161–174 (1989). [CrossRef]
  29. L. Grant, C. S. T. Daughtry, V. C. Vanderbilt, “Polarized and specular reflectance variation with leaf surface features,” Physiol. Plant. 88, 1–9 (1993). [CrossRef]
  30. S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, B. Hosgood, “Estimating leaf biochemistry using the prospect leaf optical properties model,” Remote Sensing Environ. 56, 194–202 (1996). [CrossRef]
  31. J. A. Curcio, C. C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am. 41, 302–304 (1951). [CrossRef]
  32. K. F. Palmer, D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64, 1107–1110 (1974). [CrossRef]
  33. T. Richter, L. Fukshansky, “Authentic in vivo absorption spectra for chlorophyll in leaves as derived from in situ and in vitro measurements,” Photochem. Photobiol. 59, 237–247 (1994). [CrossRef]
  34. Q. Ma, A. Ishimaru, P. Phu, Y. Kuga, “Transmission, reflection and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sensing 28, 865–872 (1990). [CrossRef]
  35. K. J. Niklas, Plant Biomechanics: an Engineering Approach to Plant Form and Function (University of Chicago Press, Chicago, Ill., 1992).
  36. K. Esau, Plant Anatomy (Wiley, New York, 1965).
  37. L. Fukshansky, V. Martinez, A. Remisowsky, J. McClendon, A. Ritterbush, T. Richter, H. Mohr, “Absorption spectra of leaves corrected for scattering and distributional error: a radiative transfer and absorption statistics treatment,” Photochem. Photobiol. 57, 538–555 (1993). [CrossRef]
  38. P. N. Schurhoff, “Die Plastiden,” in Handbuch der Pflanzenanatomie (Gebrüder Borntraeger, Berlin, 1924).
  39. B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, G. Pedrini, G. Schmuck, “Leaf optical properties experiment 93 (LOPEX93),” Technical Report EUR 16095 EN (European Commission, Joint Research Centre, Institute for Remote Sensing Applications, Ispra, Italy, 1995).
  40. A. J. Stamm, H. T. Sanders, “Specific gravity of the wood substance of loblolly pine as affected by chemical composition,” Tappi 49, 397–400 (1966).
  41. Y. M. Govaerts, M. M. Verstraete, “Applications of the L-systems to canopy reflectance modeling in a Monte Carlo ray tracing technique,” in Fractals in Geoscience and Remote Sensing, G. G. Wilkinson, L. Kanellopoulos, J. Mégier, eds. (Joint Research Centre of the European Commission, Ispra, Italy, 1994), pp. 211–236.
  42. M. Born, E. Wolf, Principles of Optics, 2nd ed. (Pergamon, Oxford, 1964).
  43. A. S. Glassner, “Surface physics for ray tracing,” in Introduction to Ray Tracing, A. S. Glassner, ed. (Academic, London, 1989), pp. 121–160.
  44. J. K. Ross, A. L. Marshak, “The influence of leaf orientation and the specular component of leaf reflectance on the canopy bidirectional reflectance,” Remote Sensing Environ. 27, 251–260 (1989). [CrossRef]
  45. D. W. Lee, “Unusual strategies of light absorption in rain-forest herbs,” in On the Economy of Plant Form and Function, T. J. Givnish, ed. (Cambridge U. Press, Cambridge, U.K., 1986), pp. 105–131.
  46. M. E. Poulson, T. C. Vogelmann, “Epidermal focussing and effects upon photosynthetic light-harvesting in leaves of oxalis,” Plant Cell Environ. 13, 803–811 (1990). [CrossRef]
  47. T. C. Vogelmann, J. F. Bornman, S. Josserand, “Photo-synthetic light gradients and spectral reégime within leaves of Medicago sativa,” Philos. Trans. R. Soc. London Ser. B 323, 411–421 (1989). [CrossRef]
  48. T. W. Brakke, “Specular and diffuse components of radiation scattered by leaves,” Agri. Forest Meteorol. 71, 283–295 (1994). [CrossRef]
  49. W. A. Allen, “Transmission of isotropic light across a dielectric surface in two and three dimensions,” J. Opt. Soc. Am. 63, 664–666 (1973). [CrossRef]
  50. J. H. McClendon, “The micro-optics of leaves. I. Patterns of reflection from the epidermis,” Am. J. Bot. 71, 1391–1397 (1984). [CrossRef]
  51. T. W. Brakke, “Goniometric measurements of light scattered in the principal plane from leaves,” in International Geoscience and Remote Sensing Symposium (IEEE, New York, 1992), pp. 508–510.
  52. T. W. Brakke, W. P. Wergin, E. F. Erbe, J. M. Harnden, “Seasonal variation in the structure and red reflectance of leaves from yellow poplar, red oak, and red maple,” Remote Sensing Environ. 43, 115–130 (1993). [CrossRef]
  53. K. E. Torrance, E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. 57, 1105–1114 (1967). [CrossRef]
  54. F. Baret, S. Jacquemoud, G. Guyot, C. Leprieur, “Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands,” Remote Sensing Environ. 41, 133–142 (1992). [CrossRef]
  55. F. M. Danson, M. D. Steven, T. J. Malthus, J. A. Clark, “High-spectral resolution data for determining leaf water content,” Int. J. Remote Sensing 13, 461–470 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited