OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 34 — Dec. 1, 1996
  • pp: 6663–6668

Scanning optical microellipsometer for pure surface profiling

Chung Wah See, Michael G. Somekh, and Richard D. Holmes  »View Author Affiliations


Applied Optics, Vol. 35, Issue 34, pp. 6663-6668 (1996)
http://dx.doi.org/10.1364/AO.35.006663


View Full Text Article

Enhanced HTML    Acrobat PDF (306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a scanning optical interferometer that can simultaneously perform ellipsometry measurements and thus provides a true surface profile. This is accomplished by projecting the back focal plane of the objective lens onto a CCD array. The measured phase differences between the p- and s-polarization components are converted, by using a specially developed algorithm, to optical phase changes caused by material variations. The compensation process is then applied to extract the true profile of the object surface. Experimental results obtained with the system are shown.

© 1996 Optical Society of America

History
Original Manuscript: January 29, 1996
Revised Manuscript: April 8, 1996
Published: December 1, 1996

Citation
Chung Wah See, Michael G. Somekh, and Richard D. Holmes, "Scanning optical microellipsometer for pure surface profiling," Appl. Opt. 35, 6663-6668 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-34-6663


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. W. See, M. Vaez Iravani, H. K. Wickramasinghe, “Scanning differential phase contrast optical microscope—application to surface study,” Appl. Opt. 24, 2373–2379 (1985). [CrossRef] [PubMed]
  2. M. G. Somekh, M. S. Valera, R. K. Appel, “Scanning heterodyne confocal differential phase and intensity microscope,” Appl. Opt. 34, 4857–4868 (1995). [CrossRef] [PubMed]
  3. C. W. See, R. K. Appel, M. G. Somekh, “Scanning differential optical profilometer for simultaneous measurement of amplitude and phase variation,” Appl. Phys. Lett. 53, 10–12 (1988). [CrossRef]
  4. M. J. Downs, W. H. McGivern, H. J. Ferguson, “Optical system for measuring the profiles of super smooth surfaces,” Precis. Eng. 7, 211–215 (1985). [CrossRef]
  5. Y. Li, F. E. Talke, “Limitations and corrections of optical profilometry in surface characterization of carbon coated magnetic recording disks,” ASME J. Tribol. 112, 670–677 (1990). [CrossRef]
  6. M. Smallen, J. J. K. Lee, “Pole tip recession measurements on thin film heads using optical profilometry with phase correction and atomic force microscopy,” AMSE J. Tribol. 115, 382–386 (1993). [CrossRef]
  7. R. D. Holmes, C. W. See, M. G. Somekh, “Scanning micro-ellipsometry for extraction of true topography,” Electron. Lett. 31, 358–359 (1995). [CrossRef]
  8. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarised Light (North-Holland, Amsterdam, 1992), Chap. 3, pp. 153–157.
  9. A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, J. T. Fanton, “Beam profile reflectometry: a new technique for dielectric film measurements,” Appl. Phys. Lett. 60, 1301– 1303 (1992). [CrossRef]
  10. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 5, pp. 83–90.
  11. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), Chap. 13, pp. 615–621.
  12. J. H. Bruning, D. R. Herriott, J. E. Gallanher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef] [PubMed]
  13. J. C. Wyant, C. L. Koliopoulos, B. Bhushan, D. Basila, “Development of a three-dimensional noncontact digital optical profiler,” ASME J. Tribol. 108, 1–8 (1986). [CrossRef]
  14. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1988), Vol. 26, Chap. 5, pp. 365–366. [CrossRef]
  15. Parameter δ is defined as δ = Δ + 180° so that at normal incidence, δ = 0°.
  16. Ref. 11, Chap. 7, pp. 324–325.
  17. TalyStep is manufactured by Rank Taylor Hobson Ltd., Leicester, United Kingdom.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited