OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 34 — Dec. 1, 1996
  • pp: 6754–6761

Laser vibrometer based on optical-feedback-induced frequency modulation of a single-mode laser diode

P. A. Roos, M. Stephens, and C. E. Wieman  »View Author Affiliations


Applied Optics, Vol. 35, Issue 34, pp. 6754-6761 (1996)
http://dx.doi.org/10.1364/AO.35.006754


View Full Text Article

Enhanced HTML    Acrobat PDF (321 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a sensitive and inexpensive vibrometer based on optical feedback by diffuse scattering to a single-mode diode laser. Fluctuations in the diode laser’s operating frequency that are due to scattered light from a vibrating surface are used to detect the amplitude and frequency of surface vibrations. An additional physical vibration of the laser provides an absolute amplitude calibration. The fundamental bandwidth is determined by the laser response time of roughly 10−9 s. A noise floor of 0.23 nm/Hz1/2 at 30 kHz with 5 × 10−5 of the incident light returning is demonstrated. This instrument provides an inexpensive and sensitive method of noncontact measurement in solid materials with low or uneven reflectivity. It can be used as a vibration or velocity sensor.

© 1996 Optical Society of America

History
Original Manuscript: February 5, 1996
Revised Manuscript: April 12, 1996
Published: December 1, 1996

Citation
P. A. Roos, M. Stephens, and C. E. Wieman, "Laser vibrometer based on optical-feedback-induced frequency modulation of a single-mode laser diode," Appl. Opt. 35, 6754-6761 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-34-6754


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. G. Anderson, “Complex tests exploit laser technology,” Laser Focus World71–78 (July1994).
  2. J. P. Nokes, G. L. Cloud, “The Application of Three Interferometric Techniques to the NDE of Composite Materials,” in Interferometry VI: Applications, R. J. Pryputniewicz, G. M. Brown, W. P. Jueptner, eds., Proc. SPIE2004, 18–26 (1993).
  3. P. Sriram, J. I. Craig, S. Hanagud, “Scanning laser Doppler techniques for vibration testing,” Exp. Tech. Phys., 21–26 (Nov./Dec.1992).
  4. M. Samuels, S. Patterson, J. Eppstein, R. Fowler, “Low cost, handheld lidar system for automotive speed detection and law,” in Laser Radar VII: Advanced Technology for Applications, R. J. Becherer, ed., Proc. SPIE1633, 147–159 (1992).
  5. A. R. Duggal, C. P. Yakymyshyn, D. F. Fobare, D. C. Hurley, “Optical detection of ultrasound with a microchip laser,” Opt. Lett. 19, 755–757 (1994). [CrossRef] [PubMed]
  6. D. J. Anderson, J. D. Valera, J. D. C. Jones, “Electronic speckle pattern interferometry using diode laser stroboscopic illumination,” Meas. Sci. Technol. 4, 982–987 (1993). [CrossRef]
  7. P. J. de Groot, G. M. Gallatin, S. H. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988). [CrossRef] [PubMed]
  8. D. A. Oursler, J. W. Wagner, “Full-field vibrometry using a Fabry–Perot e′talon interferometer,” Appl. Opt. 31, 7301–7308 (1992). [CrossRef] [PubMed]
  9. K.-L. Deng, J. Wang, “Nanometer-resolution distance measurement with a noninterferometric method,” Appl. Opt. 33, 113–116 (1994). [CrossRef] [PubMed]
  10. Sun Yusheng, Zhang ZiDong, Cai Kanze, “Improvements in a laser heterodyne vibrometer,” Rev. Sci. Instrum. 63, 2974–2976 (1992). [CrossRef]
  11. J. Kato, N. Kikuchi, I. Yamaguchi, S. Ozono, “Optical feedback displacement sensor using a laser diode and its performance improvement,” Meas. Sci. Technol. 6, 45–52 (1995). [CrossRef]
  12. S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119 (1995). [CrossRef]
  13. E. T. Shimizu, “Directional discrimination in the self-mixing type laser Doppler velocimeter,” Appl. Opt. 26, 4541–4544 (1987). [CrossRef] [PubMed]
  14. R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980). [CrossRef]
  15. D. Lenstra, J. S. Cohen, “Feedback noise in single-mode semiconductor lasers,” in Laser Noise, R. Roy, ed., Proc. SPIE1376, 245–258 (1990).
  16. M. Osinski, J. Buus, “Linewidth broadening factor in semiconductor lasers—An Overview,” IEEE J. Quantum Electron. QE-23, 9–29 (1987). [CrossRef]
  17. C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991). [CrossRef]
  18. T. W. Hänsch, B. Coullaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980). [CrossRef]
  19. M. Imai, K. Kawakita, “Optical-heterodyne displacement measurement using a frequency-ramped laser diode,” Opt. Commun. 78, 113–117 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited