OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 34 — Dec. 1, 1996
  • pp: 6788–6796

Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain

Jeremy C. Hebden and Simon R. Arridge  »View Author Affiliations


Applied Optics, Vol. 35, Issue 34, pp. 6788-6796 (1996)
http://dx.doi.org/10.1364/AO.35.006788


View Full Text Article

Enhanced HTML    Acrobat PDF (475 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method of generating images through highly scattering media is presented that involves comparing measurements of the time-dependent intensity of transmitted light with an analytical model describing the sensitivity of that intensity on localized changes in optical properties. A least-squares fitting procedure is employed to derive the amplitudes of the measurement perturbations caused by embedded absorbers and scatterers located along a line of sight between the source and detector. Images are presented of a highly scattering, solid plastic phantom with optical properties closely matched to those of human breast tissue at near-infrared wavelengths. The phantom is a 54-mm-thick slab, containing four small cylinders of contrasting scatter and absorption. Results show that embedded absorbers can be distinguished from embedded scatterers, and that the diffusion perturbation amplitude provides inherently greater spatial resolution than the absorption perturbation amplitude.

© 1996 Optical Society of America

History
Original Manuscript: October 10, 1995
Revised Manuscript: May 28, 1996
Published: December 1, 1996

Citation
Jeremy C. Hebden and Simon R. Arridge, "Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain," Appl. Opt. 35, 6788-6796 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-34-6788


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Chance, R. R. Alfano, eds., Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation (SPIE, Bellingham, Wash., 1995).
  2. E. Leith, C. Chen, H. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992). [CrossRef]
  3. L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991). [CrossRef] [PubMed]
  4. M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Time-gated imaging through scattering media using stimulated Raman amplification,” Opt. Lett. 16, 1868–1870 (1991). [CrossRef] [PubMed]
  5. S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990). [CrossRef] [PubMed]
  6. D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993). [CrossRef] [PubMed]
  7. J. C. Hebden, “Time-resolved imaging of opaque and transparent spheres embedded in a highly scattering medium,” Appl. Opt. 32, 3837–3841 (1993). [PubMed]
  8. J. C. Hebden, D. J. Hall, D. T. Delpy, “Spatial resolution performance of a time resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–209 (1995). [CrossRef] [PubMed]
  9. J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995). [CrossRef] [PubMed]
  10. G. Zaccanti, P. Donelli, “Attenuation of energy in time-gated transillumination imaging: numerical results,” Appl. Opt. 33, 7023–7030 (1994). [CrossRef] [PubMed]
  11. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  12. A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon pathlength distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993). [CrossRef]
  13. J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction on the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990). [CrossRef] [PubMed]
  14. S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).
  15. M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993). [CrossRef]
  16. H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near-infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 372–386 (1993).
  17. K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995). [CrossRef] [PubMed]
  18. S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989). [CrossRef] [PubMed]
  19. A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 34, 1767–1774 (1996). [CrossRef]
  20. S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992). [CrossRef] [PubMed]
  21. S. R. Arridge, “Photon measurement density functions: analytical forms,” Appl. Opt. 34, 7395–7409 (1995). [CrossRef] [PubMed]
  22. S. R. Arridge, M. Schweiger, M. Hiraoka, D. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993). [CrossRef] [PubMed]
  23. S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995). [CrossRef] [PubMed]
  24. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency domain diffusing photon tomography,” Opt. Lett. 20, 426–428 (1995). [CrossRef]
  25. M. R. Ostermeyer, S. L. Jacques, “Perturbation theory for optical diffusion theory: a general approach for absorbing and scattering objects in tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 98–102 (1995).
  26. S. Feng, F.-A. Zeng, B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34, 3826–3837 (1995). [CrossRef] [PubMed]
  27. J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994). [CrossRef] [PubMed]
  28. S. R. Arridge, M. Schweiger, M. Hiraoka, D. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 360–371 (1993).
  29. M. A. Franceschini, S. Fantini, S. A. Walker, J. S. Maier, W. W. Mantulin, E. Gratton, “Multichannel optical instrument for near-infrared imaging of tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 264–273 (1995).
  30. S. R. Arridge, M. Schweiger, “Photon measurement density functions part II: finite element method calculations,” Appl. Opt. 34, 8026–8037 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited