OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 35 — Dec. 10, 1996
  • pp: 7013–7018

Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm

Javier García, David Mas, and Rainer G. Dorsch  »View Author Affiliations


Applied Optics, Vol. 35, Issue 35, pp. 7013-7018 (1996)
http://dx.doi.org/10.1364/AO.35.007013


View Full Text Article

Enhanced HTML    Acrobat PDF (327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for the calculation of the fractional Fourier transform (FRT) by means of the fast Fourier transform (FFT) algorithm is presented. The process involves mainly two FFT’s in cascade; thus the process has the same complexity as this algorithm. The method is valid for fractional orders varying from −1 to 1. Scaling factors for the FRT and Fresnel diffraction when calculated through the FFT are discussed.

© 1996 Optical Society of America

History
Original Manuscript: January 23, 1996
Revised Manuscript: August 8, 1996
Published: December 10, 1996

Citation
Javier García, David Mas, and Rainer G. Dorsch, "Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm," Appl. Opt. 35, 7013-7018 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-35-7013


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875–1880 (1993). [CrossRef]
  2. H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transforms and their optical implementation: II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993). [CrossRef]
  3. A. C. McBride, F. H. Kerr, “On Namias’s fractional Fourier transform,” J. Appl. Math. 39, 159–175 (1987).
  4. V. Namias, “The fractional Fourier transform and its application in quantum mechanics,” J. Inst. Math. Its Appl. 25, 241–265 (1980). [CrossRef]
  5. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993). [CrossRef]
  6. D. Mendlovic, H. Ozaktas, A. W. Lohmann, “Graded-index fibers, Wigner distribution functions, and the fractional Fourier transform,” Appl. Opt. 33, 6188–6193 (1994). [CrossRef] [PubMed]
  7. H. M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994). [CrossRef]
  8. D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, “Fractional correlation,” Appl. Opt. 34, 303–309 (1995). [CrossRef] [PubMed]
  9. D. Mendlovic, Y. Bitran, R. G. Dorsch, C. Ferreira, J. García, H. M. Ozaktas, “Anamorphic fractional Fourier transforming optical implementation and applications,” Appl. Opt. 34, 7451–7456 (1995). [CrossRef] [PubMed]
  10. H. M. Ozaktas, D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–751 (1995). [CrossRef]
  11. P. Pellat-Finet, “Fresnel diffraction and the fractional Fourier transform,” Opt. Lett. 19, 1388–1390 (1994). [CrossRef] [PubMed]
  12. L. M. Bernardo, O. D. D. Soares, “Fractional Fourier transforms and imaging,” J. Opt. Soc. Am. A 11, 2622–2626 (1994). [CrossRef]
  13. J. Shamir, N. Cohen, “Root and power transformations in optics,” J. Opt. Soc. Am. A 12, 2415–2423 (1995). [CrossRef]
  14. H. M. Ozaktas, O. Arikan, A. Kutay, G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. (to be published).
  15. J. W. Cooley, J. W. Tukey, “An algorithm for the machine calculation of a complex Fourier series,” Math. Computat. 19, 297–301 (1965). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited