OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 36 — Dec. 20, 1996
  • pp: 7070–7074

Sensitive trace gas detection with near-infrared laser diodes and an integrating sphere

Sé bastien Tranchart, Ikhlef Hadj Bachir, and Jean-Luc Destombes  »View Author Affiliations


Applied Optics, Vol. 35, Issue 36, pp. 7070-7074 (1996)
http://dx.doi.org/10.1364/AO.35.007070


View Full Text Article

Enhanced HTML    Acrobat PDF (337 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a simple spectrometer for sensitive trace gas detection in the atmosphere. A communication laser diode is used as a light source, and a commercial integrating sphere is used as a multipass absorption cell. We developed a theoretical formulation of the relative absorption of the optical power by trace gases in the sphere and applied it to two kinds of experimental result: one that is concerned with a structureless broad absorption band of butane with the use of a 1.2-μm multimode laser diode, and one that is related to the study of an isolated and sharp rovibrational line of water vapor in air at atmospheric pressure with the use of an 830-nm single-mode laser diode. With equivalent path lengths of several meters obtained with a 10-cm-i.d. integrating sphere we can demonstrate the usefulness of such a device as a broadband multipass cell for the measurement of small absorptions.

© 1996 Optical Society of America

History
Original Manuscript: October 24, 1995
Revised Manuscript: May 15, 1996
Published: December 20, 1996

Citation
Sé bastien Tranchart, Ikhlef Hadj Bachir, and Jean-Luc Destombes, "Sensitive trace gas detection with near-infrared laser diodes and an integrating sphere," Appl. Opt. 35, 7070-7074 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-36-7070


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Johnson, F. G. Wienhold, J. P. Burrows, G. W. Harris, “Frequency modulation spectroscopy at 1.3 μm using InGaAsP lasers: a prototype field instrument for atmospheric chemistry research,” Appl. Opt. 30, 407–413 (1991).
  2. A. C. Stanton, J. A. Silver, “Measurements in the HCl 3–0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 24, 5009–5015 (1988).
  3. D. E. Cooper, R. U. Martinelli, C. B. Carlisle, H. Riris, D. B. Bour, R. J. Menna, “Measurement of 12CO2:13CO2 ratios for medical diagnostics with 1.6-μm distributed-feedback semiconductor diode lasers,” Appl. Opt. 32, 6727–6731 (1993).
  4. H. C. Sun, E. A. Whittaker, “Novel étalon fringe rejection technique for laser absorption spectroscopy,” Appl. Opt. 31, 4998–5002 (1992).
  5. P. Elterman, “Integrating cavity spectroscopy,” Appl. Opt. 9, 2140–2142 (1970).
  6. A. M. Emel’yanov, V. I. Kosyakov, B. V. Makushkin, “The use of an integrating cavity for measuring small optical absorptions,” Sov. J. Opt. Technol. 45, 31–33 (1978).
  7. E. S. Fry, G. W. Kattawar, “Measurement of the absorption coefficient of ocean water using isotropic illumination,” in Ocean Optics IX, M. A. Blizard, ed., Proc. SPIE 925, 142–148 (1988).
  8. E. S. Fry, G. W. Kattawar, R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt. 31, 2055–2065 (1992).
  9. E. Berger, D. W. T. Griffith, G. Schuster, S. R. Wilson, “Spectroscopy of matrices and thin films with an integrating sphere,” Appl. Spectrosc. 43, 320–324 (1989).
  10. J. A. Jacquez, H. F. Kuppenheim, “Theory of the integrating sphere,” J. Opt. Soc. Am. 45, 460–470 (1955).
  11. R. S. Longhurst, Geometrical and Physical Optics (Wiley, New York, 1967), pp. 406–428.
  12. Labsphere, Inc., A Guide to Integrating Sphere. Photometry & Radiometry and A Guide to Reflectance Materials and Coatings (Labsphere, Inc., North Sutton, N.H., 1994).
  13. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992), and references therein.
  14. F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
  15. M. Vervloet, Laboratoire de Photophysique Moleculaire, Universite de Paris Sud, 91405 Orsay, France (personal communication, 1994).
  16. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Masie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1993).
  17. G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited