OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 36 — Dec. 20, 1996
  • pp: 7091–7101

Analysis of the optical extraction efficiency in gas-flow lasers with different types of resonator

B. D. Barmashenko and S. Rosenwaks  »View Author Affiliations


Applied Optics, Vol. 35, Issue 36, pp. 7091-7101 (1996)
http://dx.doi.org/10.1364/AO.35.007091


View Full Text Article

Enhanced HTML    Acrobat PDF (459 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The celebrated Rigrod model [J. Appl. Phys. 34, 2602 (1963)] has recently been shown to be inadequate for calculating the output power of gas-flow lasers when the quenching of excited species is slow and the optical extraction efficiency is high [Opt. Lett. 20, 1480 (1995)]. The previous analysis of two-level systems is presented here in detail and extended to include the chemical oxygen-iodine laser (COIL). For both two-level systems and COIL’s, we obtained simple analytic formulas for the output power, which should be used instead of the Rigrod model. We present the formulas for Fabry–Perot, stable, and unstable resonators. Both the saturation parameter and the extraction efficiency differ from those appearing in the Rigrod model. The highest extraction efficiency is achievable for both stable and unstable resonators with uniform intensity distribution over the resonator cross section and is greater than that calculated by the Rigrod model. A rather surprising conclusion is that the extraction efficiency of unstable resonators can be increased substantially if one increases the length of the part of the mirrors lying downstream of the optical axis. The derived formulas are applied to describe published experimental results of supersonic COIL’s. The dependence of the power on the threshold gain is evaluated and from this the plenum yield of singlet oxygen is estimated. The value of the yield is in better agreement with experimental measurements than that obtained by the Rigrod model.

© 1996 Optical Society of America

History
Original Manuscript: August 1, 1995
Revised Manuscript: January 17, 1996
Published: December 20, 1996

Citation
B. D. Barmashenko and S. Rosenwaks, "Analysis of the optical extraction efficiency in gas-flow lasers with different types of resonator," Appl. Opt. 35, 7091-7101 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-36-7091


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).
  2. W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).
  3. G. M. Schindler, “Optimum output efficiency of homogeneously broadened lasers with constant loss,” IEEE J. Quantum Electron. QE-16, 546–549 (1980).
  4. D. L. Carroll, L. H. Sentman, “Maximizing output power of a low-gain laser system,” Appl. Opt. 32, 3930–3941 (1993).
  5. T. Hashimoto, S. Nakano, M. Hachijin, K. Komatsu, Y. Mine, H. Hara, “Characteristics of a downstream-mixing CO2 gasdynamic laser caused by behavior of two supersonic flows in a laser cavity,” Appl. Opt. 32, 5936–5943 (1993).
  6. J. H. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” AIAA Paper 94-2422 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).
  7. G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolisher, P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field I: gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).
  8. J. Schmiedberger, J. Kodymova, O. Spalek, J. Kovar, “Experimental study of gain and output coupling characteristics of a cw chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 27, 1265–1270 (1991).
  9. K. Watanabe, S. Kashiwabara, K. Sawai, S. Toshima, R. Fujimoto, “Small signal gain and saturation parameter of a transverse-flow cw oxygen-iodine laser,” IEEE J. Quantum Electron. QE-19, 1699–1703 (1983).
  10. B. D. Barmashenko, S. Rosenwaks, “Optical extraction efficiency in gas flow lasers,” Opt. Lett. 20, 1480–1482 (1995).
  11. A. J. DeMaria, “Review of cw high-power CO2 lasers,” Proc. IEEE 61, 731–748 (1973).
  12. H. Mirels, “Interaction between unstable optical resonator and cw chemical laser,” AIAA J. 13, 785–791 (1975).
  13. P. V. Avizonis, G. Hasen, K. A. Truesdell, “The chemically pumped oxygen-iodine laser,” in High-Power Gas Lasers, C. A. Freed, F. K. Tittel, P. V. Avizonis, J. J. Kim, eds., Proc. SPIE 1225, 448–474 (1990).
  14. K. A. Truesdell, C. A. Helms, G. D. Hager, “A history of COIL development in the USA,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 217–237 (1994).
  15. S. Rosenwaks, B. D. Barmashenko, A. Elior, E. Lebiush, I. Blyvas, “Parametric studies of a small scale supersonic COIL,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 238–243 (1994).
  16. J. Handke, A. Werner, W. L. Bohn, W. O. Schall, “Multikilowatt supersonic chemical oxygen iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 266–271 (1994).
  17. W. Masuda, H. Yamada, N. Naitoh, H. Fujii, T. Atsuta, “Theoretical and experimental investigation on a supersonic flow chemical oxygen-iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 244–249 (1994).
  18. M. Zagidullin, “Liquid jet O2(1Δ) generator for chemical oxygen-iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 208–216 (1994).
  19. Q. Zhuang, F. Sang, F. Chen, B. Yang, C. Zhang, “Supersonic COIL research activities in Dalian, China,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 204–207 (1994).
  20. M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Kinetics of saturation of the active medium of an oxygen-iodine laser,” Sov. J. Quantum Electron. 14, 930–936 (1986).
  21. D. A. Copeland, A. H. Bauer, “Optical saturation and extraction from the chemical oxygen-iodine laser medium,” IEEE J. Quantum Electron. 29, 2525–2539 (1993).
  22. R. Highland, L. Hanko, G. Hager, K. Truesdell, “Spectral and saturation characteristics of COIL,” AIAA Paper 94-2439 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).
  23. D. A. Copeland, C. Warner, A. H. Bauer, “Simple model for optical extraction from a flowing oxygen-iodine medium using a Fabry-Perot resonator,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 474–499 (1990).
  24. Yu. A. Anan’ev, V. P. Trusov, V. E”. Sherstobitov, “Selection of an unstable resonator for a gasdynamic laser,” Sov. J. Quantum Electron. 6, 928–931 (1976).
  25. S. Yoshida, K. Shimizu, H. Tahil, I. Tanaka, “Application of a telescopic resonator to high-power chemical oxygen-iodine lasers,” IEEE J. Quantum Electron. 30, 160–166 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited