OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 36 — Dec. 20, 1996
  • pp: 7117–7127

Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 μm

Russell Targ, Bruce C. Steakley, James G. Hawley, Lawrence L. Ames, Paul Forney, David Swanson, Richard Stone, Robert G. Otto, Vassilis Zarifis, Philip Brockman, Raymond S. Calloway, Sarah Harrell Klein, and Paul A. Robinson  »View Author Affiliations


Applied Optics, Vol. 35, Issue 36, pp. 7117-7127 (1996)
http://dx.doi.org/10.1364/AO.35.007117


View Full Text Article

Enhanced HTML    Acrobat PDF (1361 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of airborne laser radar (lidar) to measure wind velocities and to detect turbulence in front of an aircraft in real time can significantly increase fuel efficiency, flight safety, and terminal area capacity. We describe the flight-test results for two coherent lidar airborne shear sensor (CLASS) systems and discuss their agreement with our theoretical simulations. The 10.6-μm CO2 system (CLASS-10) is a flying brassboard; the 2.02-μm Tm:YAG solid-state system (CLASS-2) is configured in a rugged, lightweight, high-performance package. Both lidars have shown a wind measurement accuracy of better than 1 m/s. © 1996 Optical Society of America

© 1996 Optical Society of America

History
Original Manuscript: November 25, 1995
Revised Manuscript: May 23, 1996
Published: December 20, 1996

Citation
Russell Targ, Bruce C. Steakley, James G. Hawley, Lawrence L. Ames, Paul Forney, David Swanson, Richard Stone, Robert G. Otto, Vassilis Zarifis, Philip Brockman, Raymond S. Calloway, Sarah Harrell Klein, and Paul A. Robinson, "Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 μm," Appl. Opt. 35, 7117-7127 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-36-7117


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Johnson, S. M. Hannon, “Wake vortex modeling for airborne and ground-based measurements using coherent lidar,” in Air Traffic Control Technologies, R. G. Otto, J. Lenz, eds., Proc. SPIE 2464, 63–78 (1995).
  2. R. Bogue, H. R. Bagley, D. C. Soreide, “Coherent lidar solution for the HSCT supersonic inlet unstart problem,” in Air Traffic Control Technologies, R. G. Otto, J. Lenz, eds., Proc. SPIE 2464, 79–93 (1995).
  3. S. M. Hannon, J. A. Thomson, S. W. Henderson, R. M. Huffaker, “Windshear, turbulence, and wake vortex characterization using pulsed solid-state coherent lidar,” in Air Traffic Control Technologies, R. G. Otto, J. Lenz, eds., Proc. SPIE 2464, 94–102 (1995).
  4. T. J. Kane, J. D. Kmetec, T. J. Wagener, “Flight test of a 2-μm laser radar system,” in Air Traffic Control Technologies, R. G. Otto, J. Lenz, eds., Proc. SPIE 2464, 103–108 (1995).
  5. R. Targ, J. G. Hawley, B. C. Steakley, L. L. Ames, “Airborne lidar wind detection at 2 μm,” in Air Traffic Control Technologies, R. G. Otto, J. Lenz, eds., Proc. SPIE 2464, 109–115 (1995).
  6. R. L. McGann, “Flight test results from a low-power Doppler optical air data sensor,” in Air Traffic Control Technologies, R. G. Otto, J. Lenz, eds., Proc. SPIE 2464, 116–125 (1995).
  7. J. W. Wilson, R. D. Roberts, C. Kessinger, J. McCarthy, “Microburst wind structure and evaluation of Doppler radar for airport windshear detection,” prepared for the Joint Airport Weather Studies Project (National Center for Atmospheric Research, Boulder, Colo., January1984).
  8. R. M. Oseguera, R. L. Bowles, P. A. Robinson, “Airborne in situ computation of the windshear hazard index,” presented at the 30th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nev., 6–9 January 1992, paper AIAA 92-0291.
  9. R. Targ, M. J. Kavaya, R. M. Huffaker, R. L. Bowles, “Coherent lidar airborne windshear sensor: performance evaluation,” Appl. Opt. 30, 2013–2026 (1992).
  10. R. M. Huffaker, “CO2 laser Doppler systems for the measurement of atmospheric winds and turbulence,” Atmos. Tech. NCAR Winter (National Center for Atmospheric Research, Boulder, Colo., 1974–1975), p. 71.
  11. J. W. Bilbro, “Atmospheric laser Doppler velocimetry: an overview,” Opt. Eng. 19, 533–542 (1980).
  12. R. Foord, R. Jones, J. M. Vaughan, D. V. Willetts, “Precise comparison of experimental and theoretical SNRs in CO2 laser heterodyne systems,” Appl. Opt. 22, 3787–3795 (1983).
  13. R. M. Hardesty, T. R. Lawrence, R. A. Richter, M. J. Post, F. F. Hall, R. M. Huffaker, “Ground-based coherent lidar measurement of tropospheric and stratospheric parameters,” in Coherent Infrared Radar Systems and Applications II, R. C. Harney, ed., Proc. SPIE 415, 85–91 (1983).
  14. P. Rabinowitz, S. Jacobs, R. Targ, G. Gould, “Homodyne detection of phase modulated light,” Proc. IRE p. 2365 (1962).
  15. C. M. Sonnenschein, F. A. Horrigan, “Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604 (1971).
  16. R. G. Frehlich, “Effects of refractive turbulence on coherent laser radar,” Appl. Opt. 32, 2122–2139 (1993).
  17. R. W. Lee, K. A. Lee, “A poly-pulse-pair signal processor for coherent Doppler lidar,” in Digest of Topical Meeting on Coherent Lasar Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), pp. WA2-1–WA2-4.
  18. E. Uthe, N. Nielsen, W. Jamison, “Airborne plume and haze analyzer, ALPHA,” Bull. Am. Meteorol. Soc. 61, 1035–1043 (1980).
  19. P. A. Robinson, “An experimental and theoretical evaluation of an airborne coherent lidar windshear sensor,” presented at the AIAA Aircraft Design, Systems and Operations Meeting, Monterey, Calif., 11–13 August 1993, paper AIAA 93-3947.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited