OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 4 — Feb. 1, 1996
  • pp: 729–734

Elastic light-scattering measurements of single biological cells in an optical trap

Richard M. P. Doornbos, Michiel Schaeffer, Alfons G. Hoekstra, Peter M. A. Sloot, Bart G. de Grooth, and Jan Greve  »View Author Affiliations


Applied Optics, Vol. 35, Issue 4, pp. 729-734 (1996)
http://dx.doi.org/10.1364/AO.35.000729


View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed an instrument for determination of the angular light scattering of beads and biological cells. The instrument uses radiation pressure for levitation of particles inside a cuvette. The setup consists of two 780-nm diode lasers in a vertical double-beam trapping configuration. In the horizontal direction a weakly focused 633-nm probe beam is used to illuminate the trapped particle. One can detect scattered light over the range of from −150 to 150 deg with an angular resolution of 0.9 deg using an avalanche photodiode. With this setup light scattering from polystyrene beads was measured, and the obtained scattering patterns were compared with theoretical scattering patterns from Lorenz–Mie theory. The results show that the setup is stable, gives reproducible patterns, and qualitatively agrees with the calculations. Trapping of biological cells is more difficult than trapping of beads, because smaller forces result from smaller refractive indices. We present an angular scattering pattern measured from a human lymphocyte measured from 20 to 60 deg.

© 1996 Optical Society of America

History
Original Manuscript: February 16, 1995
Revised Manuscript: September 12, 1995
Published: February 1, 1996

Citation
Richard M. P. Doornbos, Michiel Schaeffer, Alfons G. Hoekstra, Peter M. A. Sloot, Bart G. de Grooth, and Jan Greve, "Elastic light-scattering measurements of single biological cells in an optical trap," Appl. Opt. 35, 729-734 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-4-729


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 13, p. 414.
  2. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), Chap. 1, p. 3.
  3. M. Bartholdi, G. C. Salzman, R. D. Hiebert, M. Kerker, “Differential light scattering photometer for rapid analysis of single particles in flow,” Appl. Opt. 19, 1573–1581 (1980). [CrossRef] [PubMed]
  4. A. Ashkin, J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19, 660–668 (1980). [CrossRef] [PubMed]
  5. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  6. N. Y. Misconi, J. P. Oliver, K. F. Ratcliff, E. T. Rusk, W. X. Wang, “Light scattering by laser levitated particles,” Appl. Opt. 29, 2276–2281 (1990). [CrossRef] [PubMed]
  7. F. Guilloteau, G. Grehan, G. Gouesbet, “Optical levitation experiments to assess the validity of the generalized Lorenz– Mie theory,” Appl. Opt. 31, 2942–2951 (1992). [CrossRef] [PubMed]
  8. S. O. Park, S. S. Lee, “Forward far-field pattern of a laser beam scattered by a water-suspended homogeneous sphere trapped by a focused laser beam,” J. Opt. Soc. Am. A 4, 417–422 (1987). [CrossRef]
  9. A. K. Ray, A. Souyri, J. Davis, T. M. Allen, “Precision of light scattering techniques for measuring optical parameters of microspheres,” Appl. Opt. 30, 3974–3983 (1991). [CrossRef] [PubMed]
  10. T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991). [CrossRef]
  11. R. Thurn, W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated liquid droplets,” Appl. Opt. 24, 1515–1519 (1985). [CrossRef] [PubMed]
  12. G. Schweiger, “Raman scattering on microparticles: size dependence,” J. Opt. Soc. Am. B 8, 1770–1778 (1991). [CrossRef]
  13. R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980). [CrossRef]
  14. P. M. A. Sloot, A. G. Hoekstra, H. van der Liet, C. G. Figdor, “Scattering matrix elements of biological particles measured in a flow through system: theory and practice,” Appl. Opt. 28, 1752–1762 (1989). [CrossRef] [PubMed]
  15. P. M. A. Sloot, C. G. Figdor, “Elastic light scattering from nucleated blood cells: rapid numerical analysis,” Appl. Opt. 253559–3565 (1986). [CrossRef] [PubMed]
  16. G. C. Salzman, S. B. Singham, R. G. Johnston, C. F. Bohren, “Light scattering and cytometry,” in Flow Cytometry and Sorting, M. R. Melamed, T. Lindmo, M. L. Mendelsohn, eds. (Wiley-Liss, New York, 1990), pp. 81–107.
  17. B. C. Benson, D. C. McDougal, D. S. Coffey, “The application of perpendicular and forward light scattering to assess nuclear and cellular morphology,” Cytometry 5, 513–522 (1984). [CrossRef]
  18. P. L. McNeil, A. L. Kennedy, A. S. Waggoner, D. L. Taylor, R. F. Murphy, “Light scattering changes during chemotactic stimulation of human neutrophils,” Cytometry 6, 7–12 (1985). [CrossRef] [PubMed]
  19. L. A. Sklar, Z. G. Oades, D. A. Finney, “Neutrophil degranulation detected by right angle light scattering,” J. Immunol. 133, 1483–1487 (1984). [PubMed]
  20. K. D. Lofftus, M. S. Quinby-Hunt, A. J. Hunt, F. Livolant, M. Maestre, “Light scattering by Prorecentrum micans: a new method and results,” Appl. Opt. 31, 2924–2931 (1992). [CrossRef]
  21. D. B. Shapiro, M. F. Maestre, W. M. McClain, P. G. Hull, M. S. Quinby-Hunt, J. E. Hearst, A. J. Hunt, “Determination of the average orientation of DNA in the octopus sperm Eledone cirrhossa through polarized light scattering,” Appl. Opt. 33, 5733–5744 (1994). [CrossRef] [PubMed]
  22. B. G. de Grooth, L. W. M. M. Terstappen, G. J. Puppels, J. Greve, “Light scattering polarization measurements as a new parameter in flow cytometry,” Cytometry 8, 539–544 (1987). [CrossRef] [PubMed]
  23. L. W. M. M. Terstappen, B. G. de Grooth, K. Visscher, F. A. Van Kouterik, J. Greve, “Four-parameter white blood cell differential counting based on light scattering measurements,” Cytometry 9, 39–43 (1988). [CrossRef] [PubMed]
  24. L. W. M. M. Terstappen, B. G. de Grooth, W. Van Berkel, C. H. H. Ten Napel, J. Greve, “Application of orthogonal light scattering for routine screening of lymphocyte samples,” Cytometry 9, 220–225 (1988). [CrossRef] [PubMed]
  25. A. G. Hoekstra, R. M. P. Doornbos, K. E. I. Deurloo, H. J. Noordmans, B. G. de Grooth, P. M. A. Sloot, “Another face of Lorenz–Mie scattering: monodisperse distributions of spheres produce Lissajous-like patterns,” Appl. Opt. 33, 494–500 (1994). [CrossRef] [PubMed]
  26. R. M. P. Doornbos, A. G. Hoekstra, K. E. I. Deurloo, B. G. de Grooth, P. M. A. Sloot, J. Greve, “Lissajous-like patterns in scatter plots of calibration beads,” Cytometry 16, 236–242 (1994). [CrossRef] [PubMed]
  27. T. C. Bakker Schut, E. F. Schipper, B. G. de Grooth, J. Greve, “Optical-trapping micromanipulation using 780-nm diode lasers,” Opt. Lett. 18, 447–449 (1993). [CrossRef]
  28. T. C. Bakker Schut, A. Florians, K. O. Van Der Werf, B. G. de Grooth, “Flow cytometry signal processing and data acquisition with a personal computer using an RTI-800 multifunction A/D I/O board,” Rev. Sci. Instrum. 64, 3116–3120 (1993). [CrossRef]
  29. F. Guilloteau, G. Grehan, G. Gouesbet, “Optical levitation experiments to assess the validity of the generalized Lorenz- Mie theory,” Appl. Opt. 31, 2942–2951 (1992). [CrossRef] [PubMed]
  30. L. V. Lorenz, “Upon the light reflected and refracted by a transparent sphere,” Vidensk. Selsk. Shrifter 6, 1–62 (1890).
  31. G. Mie, “Considerations on the optics of turbid media, especially colloidal metal sols,” Ann. Phys. (Leipzig) 25, 377–442 (1908).
  32. G. Gouesbet, G. Grehan, B. Maheu, “Localized interpretation to compute all the coefficients g(n, m) in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990). [CrossRef]
  33. E. Gulari, “Latex particles size distribution from multiwavelength turbidity spectra,” Part. Charact. 4, 96–100 (1987). [CrossRef]
  34. L. W. M. M. Terstappen, B. G. de Grooth, G. M. J. Nolten, C. H. H. Ten Napel, W. Van Berkel, J. Greve, “Physical discrimination between human T-lymphocyte subpopulations by means of light scattering, revealing two populations of T8-positive cells,” Cytometry 7, 178–183 (1986). [CrossRef] [PubMed]
  35. N. F. Owens, D. Gingell, “Inhibition of cell adhesion by a synthetic polymer adsorbed to glass shown under defined hydrodynamic stress,” J. Cell Sci. 87, 667–675 (1987). [PubMed]
  36. K. Visser, G. J. Bakenhoff, “Theoretical study of optically induced force on spherical particles in a single beam trap. II: Mie scatterers,” Optik 90, 57–60 (1992).
  37. R. C. Weast, ed., Handbook of Chemistry and Physics (CRC Press, Cleveland, Ohio, 1976), Chap. E, p. 223.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited