Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Elastic light-scattering measurements of single biological cells in an optical trap

Not Accessible

Your library or personal account may give you access

Abstract

We have developed an instrument for determination of the angular light scattering of beads and biological cells. The instrument uses radiation pressure for levitation of particles inside a cuvette. The setup consists of two 780-nm diode lasers in a vertical double-beam trapping configuration. In the horizontal direction a weakly focused 633-nm probe beam is used to illuminate the trapped particle. One can detect scattered light over the range of from −150 to 150 deg with an angular resolution of 0.9 deg using an avalanche photodiode. With this setup light scattering from polystyrene beads was measured, and the obtained scattering patterns were compared with theoretical scattering patterns from Lorenz–Mie theory. The results show that the setup is stable, gives reproducible patterns, and qualitatively agrees with the calculations. Trapping of biological cells is more difficult than trapping of beads, because smaller forces result from smaller refractive indices. We present an angular scattering pattern measured from a human lymphocyte measured from 20 to 60 deg.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Angular distribution of light scattered by single biological cells and oriented particle agglomerates

Jörg Neukammer, Carsten Gohlke, Andreas Höpe, Thomas Wessel, and Herbert Rinneberg
Appl. Opt. 42(31) 6388-6397 (2003)

Automated single-cell manipulation and sorting by light trapping

Tudor N. Buican, Miriam J. Smyth, Harry A. Crissman, Gary C. Salzman, Carleton C. Stewart, and John C. Martin
Appl. Opt. 26(24) 5311-5316 (1987)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved