OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 5 — Feb. 10, 1996
  • pp: 860–871

Performance comparison between multiple-quantum-well modulator-based and vertical-cavity-surface-emitting laser-based smart pixels

Tatsushi Nakahara, Shinji Matsuo, Seiji Fukushima, and Takashi Kurokawa  »View Author Affiliations

Applied Optics, Vol. 35, Issue 5, pp. 860-871 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (309 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We compared multiple-quantum-well modulator-based smart pixels and vertical-cavity-surface-emitting laser (VCSEL) based smart pixels in terms of optical switching power, switching speed, and electric-power consumption. Optoelectronic circuits integrating GaAs field-effect transistors are designed for smart pixels of both types under the condition that each pixel has an optical threshold and gain. It is shown that both types perform maximum throughput of ∼3 Tbps/cm2. In regard to design flexibility, the modulator type is advantageous because switching time can be reduced by supplying large electric power, whereas switching time and electric-power consumption are limited to larger than certain values in the VCSEL type. In contrast, in regard to optical implementation, the VCSEL type is advantageous because it does not need an external bias-light source, whereas the modulator type needs bias-light arrays that must be precisely located because the small modulator diameter, <10 μm, is essential to high-speed operation. A bias-light source that increases the total power consumption of the system may offset the advantages of the modulator type.

© 1996 Optical Society of America

Original Manuscript: April 10, 1995
Revised Manuscript: September 21, 1995
Published: February 10, 1996

Tatsushi Nakahara, Shinji Matsuo, Seiji Fukushima, and Takashi Kurokawa, "Performance comparison between multiple-quantum-well modulator-based and vertical-cavity-surface-emitting laser-based smart pixels," Appl. Opt. 35, 860-871 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988). [CrossRef] [PubMed]
  2. L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. F. Leibenguth, M. W. Focht, J. M. Freund, G. Guth, L. E. Smith, “Batch fabrication and operation of GaAs-AlxGa1–x As field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays,” IEEE J. Quantum Electron. 29, 670–677 (1993). [CrossRef]
  3. F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,”Appl. Opt. 33, 1601–1618 (1994). [CrossRef] [PubMed]
  4. T. Nakahara, S. Matsuo, C. Amano, T. Kurokawa, “Switch-able-logic photonic switch array monolithically integrating MSM’s, FET’s, and MQW modulators,” IEEE Photon. Technol. Lett. 7, 53–55 (1995). [CrossRef]
  5. J. Cheng, P. Zhou, S. Z. Sun, S. Hersee, D. R. Myers, J. Zolper, G. A. Vawter, “surface-emitting laser-based smart pixels for two-dimensional optical logic and reconfigurable optical interconnections,” IEEE J. Quantum Electron. 29, 741–756 (1993). [CrossRef]
  6. K. Kasahara, “VSTEP-based smart pixels,” IEEE J. Quantum Electron. 29, 757–768 (1993). [CrossRef]
  7. S. Matsuo, T. Nakahara, Y. Kohama, Y. Ohiso, S. Fukushima, T. Kurokawa, “Photonic switch monolithically integrating an MSM PD, MESFETs, and a vertical-cavity surface-emitting laser,” presented at the LEOS ’94 Annual Meeting, Boston, Mass., 31 October–3 November 1994, paper PD 2.1.
  8. S. Yu, S. R. Forrest, “Implementations of smart pixels for optoelectronic processors and interconnection systems I & II,” J. Lightwave Technol. 11, 1659–1680 (1993). [CrossRef]
  9. C. Amano, S. Matsuo, T. Nakahara, T. Kurokawa, “Three-terminal operation analysis of exciton absorption reflection switches (EAR’s),” IEEE J. Quantum Electron. 29, 775–784 (1993). [CrossRef]
  10. T. Nakahara, C. Amano, N. Susa, S. Matsuo, T. Kurokawa, “Optimal MQW structure for lowering the switching energy of exciton absorption reflection switch (EARS),” presented at OEC ’92, Makuhari, Chiba, Japan, 15–17 July 1992, paper 17C3-3.
  11. M. Yamaguchi, T. Yamamoto, K. Yukimatsu, S. Matsuo, C. Amano, Y. Nakano, T. Kurokawa, “Experimental investigation of a digital free-space photonic switch that uses exciton absorption reflection switch arrays,” Appl. Opt. 33, 1337–1344 (1994). [CrossRef] [PubMed]
  12. R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, J. L. Jewell, “Progress in planarized vertical cavity surface emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 149–159 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited