OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 6 — Feb. 20, 1996
  • pp: 986–997

Onset of strong scintillation with application to remote sensing of turbulence inner scale

Reginald J. Hill and Rod G. Frehlich  »View Author Affiliations


Applied Optics, Vol. 35, Issue 6, pp. 986-997 (1996)
http://dx.doi.org/10.1364/AO.35.000986


View Full Text Article

Enhanced HTML    Acrobat PDF (296 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Numerical simulation of propagation through atmospheric turbulence of an initially spherical wave is used to calculate irradiance variance σ I 2 , variance of log irradiance σ ln I 2 , and mean of log irradiance 〈ln I〉 for 13 values of l0/RF (i.e., of turbulence inner scale l0 normalized by Fresnel scale RF ) and 10 values of Rytov variance σ Rytov 2 , which is the irradiance variance, including the inner-scale effect, predicted by perturbation methods; l0/RF was varied from 0 to 2.5 and σ Rytov 2 from 0.06 to 5.0. The irradiance probability distribution function (PDF) and, hence, σ I 2 , σ ln I 2 , and 〈ln I〉 are shown to depend on only two dimensionless parameters, such as l0/RF and σ Rytov 2 . Thus the effects of the onset of strong scintillation on the three statistics are characterized completely. Excellent agreement is obtained with previous simulations that calculated σ I 2 . We find that σ I 2 , σ ln I 2 , and 〈ln I〉 are larger than their weak-scintillation asymptotes (namely, σ Rytov 2 , σ Rytov 2 , and σ Rytov 2 / 2 , respectively) for the onset of strong scintillation for all l0/RF . An exception is that for the largest l0/RF , the onset of strong scintillation causes σ ln I 2 to decrease relative to its weak-scintillation limit, σ Rytov 2 . We determine the efficacy of each of the three statistics for measurement of l0, taking into account the relative difficulties of measuring each statistic. We find that measuring σ I 2 is most advantageous, although it is not the most sensitive to l0 of the three statistics. All three statistics and, hence, the PDF become insensitive to l0 for roughly 1 < β 0 2 < 3 (where β 0 2 is σ Rytov 2 for l0 = 0); this is a condition for which retrieval of l0 is problematic.

© 1996 Optical Society of America

History
Original Manuscript: July 17, 1995
Revised Manuscript: October 10, 1995
Published: February 20, 1996

Citation
Reginald J. Hill and Rod G. Frehlich, "Onset of strong scintillation with application to remote sensing of turbulence inner scale," Appl. Opt. 35, 986-997 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-6-986


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Hill, “Review of optical scintillation methods of measuring the refractive-index spectrum, inner scale and surface fluxes,” Waves Random Media 2, 179–201 (1992). [CrossRef]
  2. A. S. Gurvich, B. N. Meleshkin, “Determining the microscale of turbulence from light intensity fluctuations,” Izv. Akad Nauk SSSR Fiz. Atmos. Okeana 2, 688–694 (1966).[Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 2, 417–420 (1966)].
  3. P. M. Livingston, “Proposed method of inner scale measurement in a turbulent atmosphere,” Appl. Opt. 11, 684–687 (1972). [CrossRef] [PubMed]
  4. N. Ts. Gomboyev, E. V. Zubritskiy, G. F. Malygina, V. L. Mironov, S. S. Khmelevtsov, “Determination of internal scale of turbulence from optical measurements,” in Proceedings of the Third All-Union Symposium on Propagation of Laser Radiation in the Atmosphere (Institute of Atmospheric Physics, Tomsk, Russia, 1975), pp. 183–184. (English translation available from National Translation Center, Library of Congress, Washington, D.C.)
  5. A. F. Zhukov, I. V. Lukin, R. Sh. Tsvyk, “Amplitude measurements of inner scale of turbulence,” in Proceedings of the All-Union Symposium on Laser and Acoustic Monitoring of the Atmosphere, Part II (Institute of Atmospheric Optics, Tomsk, Russia, 1984), pp. 29–32. (English translation available from National Translation Center, Library of Congress, Washington, D.C.)
  6. Ye. A. Monastyrnyy, G. Ya Patrushev, A. I. Petrov, V. V. Pokasov, “Method for determining the inner scale of turbulence,” in Proceedings of the All-Union Symposium on Laser and Acoustic Monitoring of the Atmosphere, Part II (Institute of Atmospheric Optics, Tomsk, Russia, 1984), pp. 26–28. (English translation available from National Translation Center, Library of Congress, Washington, D.C.)
  7. A. V. Artem’ev, A. S. Gurvich, “Experimental study of coherence-function spectra,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 14, 734–738 (1971).[Radiophys. Quantum Electron. 14, 580–583 (1971)].
  8. W.A. Coles, R. G. Frehlich, “Simultaneous measurements of angular scattering and intensity scintillations in the atmosphere,” J. Opt. Soc. Am. 72, 1041–1048 (1982). [CrossRef]
  9. J. W. Strohbehn, “The feasibility of laser experiments for measuring the permittivity spectrum of the turbulent atmosphere,” J. Geophys. Res. 75, 1067–1076 (1970). [CrossRef]
  10. V. P. Lukin, V. L. Mironov, V. V. Pokasov, S. S. Khmelevtsov, “Optical phase measurements of refractive-index fluctuations,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 12, 550–553 (1976).[Izv. Akad. Sci. USSR Atmos. Oceanic Phys. 12, 333–335 (1976)].
  11. A. Consortini, L. Ronchi, “Laser propagation through atmospheric turbulence,” Alta Freq. 10, 769–772 (1974).
  12. A. Consortini, “Measurements of the angle of arrival fluctuations of a laser beam due to turbulence,” in Optical Propagation in the Atmosphere, AGARD Conf. Proc. No. 183 (National Technical Information Service, Springfield, Va., 1976), pp. 26.1–26.7.
  13. A. Consortini, P. Pandolfini, C. Romanelli, R. Vanni, “Turbulence investigation of small scale by angle-of-arrival fluctuations of a laser beam,” Opt. Acta 27, 1221–1228 (1980). [CrossRef]
  14. A. Consortini, K. A. O’Donnell, G. Conforti, “Determination of the inner scale of atmospheric turbulence through laser beam wander,” in Optics and the Information Age (14th Congress of the International Commission for Optics), H. H. Arsenault, ed., Proc. Soc. Photo-Opt. Instrum. Eng.813, 117–118 (1987).
  15. A. Consortini, “Role of the inner scale of atmospheric turbulence in optical propagation and methods to measure it,” in Scattering in Volumes and Surfaces, M. Nieto-Vesperinas, J. C. Dainty, eds. (Elsevier, New York, 1990), pp. 73–90.
  16. A. Consortini, Y. Y. Sun, L. Z. Ping, G. Conforti, “A mixed method for measuring the inner scale of atmospheric turbulence,” J. Mod. Opt. 37, 1555–1560 (1990). [CrossRef]
  17. A. Consortini, K. A. O’Donnell, “Beam wandering of thin parallel beams through atmospheric turbulence,” Waves Random Media 3, S11–S28 (1991). [CrossRef]
  18. R. G. Frehlich, “Variance of focal-plane centroids,” J. Opt. Soc. Am. A 7, 2119–2140 (1990). [CrossRef]
  19. D. A. Gray, A. T. Waterman, “Measurement of fine-scale atmospheric structure using an optical propagation technique,” J. Geophys. Res. 75, 1077–1083 (1970). [CrossRef]
  20. R. G. Frehlich, “Estimation of the parameters of the atmospheric turbulence spectrum using measurements of the spatial intensity covariance,” Appl. Opt. 27, 2194–2198 (1988). [CrossRef] [PubMed]
  21. R. Frehlich, “Laser scintillation measurements of the temperature spectrum in the atmospheric surface layer,” J. Atmos. Sci. 49, 1494–1509 (1992). [CrossRef]
  22. A. S. Gurvich, “The determination of turbulence characteristics from light scattering experiments,” Atmos. Oceanic Phys. 4, 90–95 (1968).
  23. N. S. Time, “Estimation of the turbulence spectrum in the dissipation range from measurements of laser light fluctuations,” Atmos. Oceanic Phys. 8, 48–49 (1972).
  24. R. J. Hill, “Theory of measuring the path-averaged inner scale of turbulence by spatial filtering of optical scintillation,” Appl. Opt. 21, 1201–1211 (1982). [CrossRef] [PubMed]
  25. R. J. Hill, G. R. Ochs, “Fine calibration of large-aperture optical scintillometers and an optical estimate of the inner scale of turbulence,” Appl. Opt. 17, 3608–3612 (1978). [CrossRef] [PubMed]
  26. G. R. Ochs, R. J. Hill, “Optical-scintillation method of measuring turbulence inner scale,” Appl. Opt. 24, 2430–2432 (1985). [CrossRef] [PubMed]
  27. Z. Azar, E. Azoulay, M. Tur, “Optical bichromatic correlation method for the remote sensing of inner scale,” in Conference on Lasers and Electro-Optics, Vol. 14 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 4–5.
  28. E. Azoulay, V. Thiermann, A. Jetter, A. Kohnle, Z. Azar, “Optical measurements of the inner scale of turbulence,” J. Phys. D 21, 541–544 (1988). [CrossRef]
  29. V. Thiermann, E. Azoulay, “A two wavelength laser scintillometer for monitoring surface layer fluxes under near neutral conditions,” in Proceedings of the International Laser Radar Conference (University of Florence, Florence, Italy) (1988), pp. 70–73.
  30. R. J. Hill, “Comparison of scintillation methods for measuring the inner scale of turbulence,” Appl. Opt. 27, 2187–2193 (1988). [CrossRef] [PubMed]
  31. V. Thiermann, H. Grassl, “The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation,” Boundary-Layer Meteorol. 58, 367–389 (1992). [CrossRef]
  32. R. G. Frehlich, G. R. Ochs, “Effects of saturation on the optical scintillometer,” Appl. Opt. 29, 548–553 (1990). [CrossRef] [PubMed]
  33. T. Wang, G. R. Ochs, S. F. Clifford, “A saturation-resistant optical scintillometer to measure Cn2,” J. Opt. Soc. Am. 68, 334–338 (1978). [CrossRef]
  34. M. I. Charnotskii, “Asymptotic analysis of the flux fluctuations averaging and finite-size source scintillations in a random medium,” Waves Random Media 1, 223–243 (1991). [CrossRef]
  35. S. M. Flatté, G. Wang, J. Martin, “Irradiance variance of optical waves through atmospheric turbulence by numerical simulation and comparison with experiment,” J. Opt. Soc. Am. A 10, 2363–2370 (1993). [CrossRef]
  36. S. M. Flatté, C. Bracher, G. Wang, “Probability-density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation,” J. Opt. Soc. Am. A 11, 2080–2092 (1994). [CrossRef]
  37. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976). [CrossRef]
  38. J. M. Martin, S. M. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111–2126 (1988). [CrossRef] [PubMed]
  39. J. M. Martin, S. M. Flatté, “Simulation of point-source scintillation through three-dimensional random media,” J. Opt. Soc. Am. A 7, 838–847 (1990). [CrossRef]
  40. J. Martin, “Simulation of wave propagation in random media: theory and applications,” in Wave Propagation in Random Media (Scintillation), V. I. Tatarskii, A. Ishimaru, V. U. Zavorotny, eds. (SPIE Press, Bellingham, Wash., 1993), pp. 463–486.
  41. C. A. Davis, D. L. Walters, “Atmospheric inner-scale effects on normalized irradiance variance,” Appl. Opt. 33, 8406–8411 (1994). [CrossRef] [PubMed]
  42. W. A. Coles, J. P. Filice, R. G. Frehlich, M. Yadlowsky, “Simulation of wave propagation in three-dimensional random media,” Appl. Opt. 34, 2089–2101 (1995). [CrossRef] [PubMed]
  43. A. Consortini, F. Cochetti, J. H. Churnside, R. J. Hill, “Inner-scale effect on irradiance variance measured for weak-to-strong atmospheric scintillation,” J. Opt. Soc. Am. A 10, 2354–2362 (1993). [CrossRef]
  44. V. I. Tatarskii, “Light propagation in a medium with random refractive index inhomogeneities in the Markov random process approximation,” Zh. Eksp. Teor. Fiz. 56, 2106–2117 (1969).[Sov. Phys. JETP 29, 1133–1138 (1969)].
  45. V. I. Klyatskin, V. I. Tatarskii, “The parabolic equation approximation for propagation of waves in a medium with random inhomogeneities,” Zh. Eksp. Teor. Fiz. 58, 624–634 (1970).[Sov. Phys. JETP 31, 335–339 (1970)].
  46. V. I. Klyatskin, V. I. Tatarskii, “A new method of successive approximations in the problem of the propagation of waves in a medium having random large-scale inhomogeneities,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 14, 1400–1415 (1971).[Radiophys. Quantum Electron. 14, 1100–1111 (1971)].
  47. V. I. Klyatskin, “Applicability of the approximation of a Markov random process in problems relating to the propagation of light in a medium with random inhomogeneities,” Zh. Eksp. Teor. Fiz. 57, 952–958 (1969).[Sov. Phys. JETP 30, 520–523 (1970)].
  48. V. U. Zavorotnyi, “Strong fluctuations of electromagnetic waves in a random medium with finite longitudinal correlation of the inhomogeneities,” Zh. Eksp. Teor. Fiz. 75, 56–65 (1978).[Sov. Phys. JETP 48, 27–31 (1978)].
  49. A. M. Obukhov, “The structure of the temperature field in turbulent flow,” Izv. Akad. Nauk SSSR Ser. Geogr. Geofiz. 13, 58–69 (1949).
  50. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter, Jerusalem, 1971).
  51. R. J. Hill, S. F. Clifford, “Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation,” J. Opt. Soc. Am. 68, 892–899 (1978). [CrossRef]
  52. R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978). [CrossRef]
  53. L. Mahrt, “Intermittency of atmospheric turbulence,” J. Atmos. Sci. 46, 79–95 (1989). [CrossRef]
  54. R. J. Hill, “Effects of large-scale intermittency of turbulence on scalar spectra at high wave numbers,” NOAA Tech. Memo. ERL 409-WPL 54 (National Technical Information Service, Springfield, Va., 1980).
  55. J.H. Churnside, R.G. Frehlich, “Experimental evaluation of log-normally modulated Rician and IK models of optical scintillation in the atmosphere,” J. Opt. Soc. Am. A 6, 1760–1766 (1989). [CrossRef]
  56. J. Gozani, “Wave propagation in an intermittent quasi-homogeneous turbulent medium,” Opt. Lett. 17, 559–561 (1992). [CrossRef] [PubMed]
  57. R. G. Frehlich, “The effects of global intermittency on wave propagation in random media,” Appl. Opt. 33, 5764–5769 (1994). [CrossRef] [PubMed]
  58. V. I. Tatarskii, V. U. Zavorotnyi, “Wave propagation in random media with fluctuating turbulent parameters,” J. Opt. Soc. Am. A 2, 2069–2076 (1985). [CrossRef]
  59. V.I. Tatarskii, “Some new aspects in the problem of waves and turbulence,” Radio Sci. 22, 859–865 (1987). [CrossRef]
  60. R. J. Hill, G. R. Ochs, “Inner-scale dependence of scintillation variances measured in weak scintillation,” J. Opt. Soc. Am. A 9, 1406–1411 (1992). [CrossRef]
  61. R. S. Lawrence, J. W. Strohbehn, “A survey of clear air propagation effects relevant to optical communications,” Proc. IEEE 58, 1523–1545 (1970). [CrossRef]
  62. M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, V. V. Pokasov, “Similarity relations for strong fluctuations of light in a turbulent medium,” Zh. Eksp. Teor. Fiz. 67, 2035–2046 (1974).[Sov. Phys. JETP 40, 1011–1016 (1974)].
  63. A. S. Gurvich, V. I. Tatarskii, “Coherence and intensity fluctuations of light in the turbulent atmosphere,” Radio Sci. 10, 3–14 (1975). [CrossRef]
  64. A. S. Gurvich, M. A. Kallistratova, F. E. Martvel’, “An investigation of strong fluctuations of light intensity in a turbulent medium at a small wave parameter,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 20, 1020–1031 (1977).[Radiophys. Quantum Electron. 20, 705–714 (1977)].
  65. R. J. Hill, “Optical propagation in turbulent water,” J. Opt. Soc. Am. 68, 1067–1072 (1978). [CrossRef]
  66. R. A. Elliot, J. R. Kerr, P. A. Pincus, “Optical propagation in laboratory-generated turbulence,” Appl. Opt. 18, 3315–3323 (1979). [CrossRef]
  67. C. G. Little, “A diffraction theory of the scintillation of stars on optical and radio wave-lengths,” Mon. Not. R. Astron. Soc. 111, 289–302 (1951).
  68. K. S. Gochelashvily, V. G. Pevgov, V. I. Shishov, “Saturation of fluctuations of the intensity of laser radiation at large distances in a turbulent atmosphere (Fraunhofer zone of transmitter2,” Kvant. Elektron. 1, 1156–1165 (1974).[Sov. J. Quantum Electron. 4, 632–637 (1974)].
  69. A. M. Prokhorov, F. V. Bunkin, K. S. Gochelashvily, V. I. Shishov, “Laser irradiance propagation in turbulent media,” Proc. IEEE 63, 790–811 (1975). [CrossRef]
  70. I. G. Yakushkin, “Asymptotic calculations of field-intensity fluctuations in a turbulent medium for long paths,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 18, 1660–1666 (1975).[Radiophys. Quantum Electron. 18, 1224–1229 (1975)].
  71. V. U. Zavorotnyi, V. I. Klyatskin, V. I. Tatarskii, “Strong fluctuations of the intensity of electromagnetic waves in randomly inhomogeneous media,” Zh. Eksp. Teor. Fiz. 73, 481–497 (1977).[Sov. Phys. JETP 46, 252–260 (1977)].
  72. M. Tur, “Numerical solutions for the fourth moment of a plane wave propagating in a random medium,” J. Opt. Soc. Am. 72, 1683–1691 (1982). [CrossRef]
  73. R. J. Hill, S. F. Clifford, “Theory of saturation of optical scintillation by strong turbulence for arbitrary refractive-index spectra,” J. Opt Soc. Am. 71, 675–685 (1981). [CrossRef]
  74. S. F. Clifford, G. R. Ochs, R. S. Lawrence, “Saturation of optical scintillation by strong turbulence,” J. Opt. Soc. Am. 64, 148–154 (1974). [CrossRef]
  75. R. J. Hill, “Theory of saturation of optical scintillation by strong turbulence: plane-wave variance and covariance and spherical-wave covariance,” J. Opt. Soc. Am. 72, 212–221 (1982). [CrossRef]
  76. R. G. Frehlich, S. M. Wandzura, R. J. Hill, “Log-amplitude covariance for waves propagating through very strong turbulence,” J. Opt. Soc. Am. A 4, 2158–2161 (1987). [CrossRef]
  77. G. R. Ochs, “Measurements of 0.63 μm laser-beam scintillation in strong atmospheric turbulence,” ESSA Tech. Rep. ERL 154-WPL 10 (National Technical Information Service, Springfield, Va., 1969).
  78. G. Parry, P. N. Pusey, “K distributions in atmospheric propagation of laser light,” J. Opt. Soc. Am. 69, 796–798 (1979). [CrossRef]
  79. G. Parry, “Measurements of atmospheric turbulence induced intensity fluctuations in a laser beam,” Opt. Acta 28, 715–728 (1981). [CrossRef]
  80. R. L. Phillips, L. C. Andrews, “Measured statistics of laser-light scattering in atmospheric turbulence,” J. Opt. Soc. Am. 71, 1440–1445 (1981). [CrossRef]
  81. R. J. Hill, J. H. Churnside, “Observational challenges of strong scintillations of irradiance,” J. Opt. Soc. Am. A 5, 445–447 (1988). [CrossRef]
  82. R. J. Hill, W. D. Otto, J. R. Jordan, “Operation of the fluxes scintillometer,” NOAA Tech. Memo. ERL ETL-241 (National Technical Information Service, Springfield, Va., 1994).
  83. A. Consortini, G. Conforti, “Detector saturation effect on higher-order moments of intensity fluctuations in atmospheric laser propagation measurements,” J. Opt. Soc. Am. A 1, 1075–1077 (1984). [CrossRef]
  84. A. Consortini, E. Briccolani, G. Conforti, “Strong-scintillation-statistics deterioration due to detector saturation,” J. Opt. Soc. Am. A 3, 101–107 (1986). [CrossRef]
  85. A. Consortini, R. J. Hill, “Reduction of the moments of intensity fluctuations caused by amplifier saturation for both the K and log-normally modulated exponential probability densities,” Opt. Lett. 12, 304–306 (1987). [CrossRef] [PubMed]
  86. J. H. Churnside, R. J. Hill, “Probability density of irradiance for strong path-integrated refractive turbulence,” J. Opt. Soc. Am. A 4, 727–733 (1987). [CrossRef]
  87. N. Ben-Yosef, E. Goldner, “Sample size influence on optical scintillation analysis. 1: Analytical treatment of the higher-order irradiance moments,” Appl. Opt. 27, 2167–2171 (1988). [CrossRef] [PubMed]
  88. E. Goldner, N. Ben-Yosef, “Sample size influence on optical scintillation analysis. 2: Simulation approach,” Appl. Opt. 27, 2172–2177 (1988). [CrossRef] [PubMed]
  89. R. G. Frehlich, J. H. Churnside, “Statistical properties of estimates of the moments of laser scintillation,” J. Mod. Opt. 36, 1645–1659 (1989). [CrossRef]
  90. G. R. Ochs, R. B. Fritz, “Observations of spherical-wave scintillation in strong refractive-index turbulence,” NOAA Tech. Memo. ERL WPL-154 (National Technical Information Service, Springfield, Va., 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited