OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 7 — Mar. 1, 1996
  • pp: 1025–1031

Uniformization of the axial intensity of diffraction axicons by polychromatic illumination

Z. Jaroszewicz, J. F. Román Dopazo, and C. Gomez-Reino  »View Author Affiliations

Applied Optics, Vol. 35, Issue 7, pp. 1025-1031 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (240 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The axial intensity of axicons illuminated by a coherent wave usually exhibits rapid oscillations from diffraction on the sharp edges of the aperture of the element. These oscillations can be suppressed when the diffractive version of the axicon is illuminated from a polychromatic source. This possibility is examined based on the example of the annular-aperture logarithmic axicon. The estimate for the wavelength interval of the illuminating source required for uniformization is obtained with the help of the stationary-phase method. Furthermore the shape of the radial intensity distribution can be maintained almost unchanged. These findings are confirmed by numerical evaluation of the Fresnel diffraction integral.

© 1996 Optical Society of America

Original Manuscript: August 16, 1995
Published: March 1, 1996

Z. Jaroszewicz, J. F. Román Dopazo, and C. Gomez-Reino, "Uniformization of the axial intensity of diffraction axicons by polychromatic illumination," Appl. Opt. 35, 1025-1031 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. McLeod, “Axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954).
  2. A. Sommerfeld, Optics (Academic, New York, 1964), pp. 213–216.
  3. L. M. Soroko, “Axicons and meso-optical imaging devices,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1989), Vol. 27, pp. 109–160.
  4. J. Sochacki, A. Kolodziejczyk, Z. Jaroszewicz, S. Bará, “Nonparaxial designing of generalized axicons,” Appl. Opt. 31, 5326–5330 (1992).
  5. A. J. Cox, J. D’Anna, “Constant-axial-intensity nondiffracting beam,” Opt. Lett. 17, 232–234 (1992).
  6. R. M. Herman, T. A. Wiggins, “Apodization of diffraction-less beams,” Appl. Opt. 31, 5913–5915 (1992).
  7. Z. Jaroszewicz, J. Sochacki, A. Kolodziejczyk, L. R. Staronski, “Apodised annular-aperture logarithmic axicon: smoothess and uniformity of intensity distributions,” Opt. Lett. 18, 1893–1895 (1993).
  8. G. Roy, R. Tremblay, “Influence of the divergence of a laser beam on the axial intensity distribution of an axicon,” Opt. Commun. 34, 1–3 (1980).
  9. A. J. Cox, D. C. Dibble, “Nondiffracting beam from a spatially filtered Fabry–Perot resonator,” J. Opt. Soc. Am.A 9, 282–286 (1992).
  10. J. Sochacki, Z. Jaroszewicz, L. R. Staronski, A. Kolodziejczyk, “Annular-aperture logarithmic axicon,” J. Opt. Soc. Am.A 10, 1765–1768 (1993).
  11. J. Stamnes, Waves in Focal Regions (Hilger, London, 1986), pp. 91–135.
  12. M. V. Pérez, C. Gómez-Reino, J. M. Cuadrado, “Diffraction patterns and zone plates produced by thin linear axicons,” Opt. Acta 33, 1161–1176 (1986).
  13. J. Fujiwara, “Optical properties of conic surfaces. I. Reflecting cone,” J. Opt. Soc. Am. 52, 287–292 (1962).
  14. A. Vasara, J. Turunen, A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am.A 6, 1748–1754 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited