OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 7 — Mar. 1, 1996
  • pp: 1077–1082

Small-bore hollow waveguides for delivery of 3-μm laser radiation

Rebecca L. Kozodoy, Antonio T. Pagkalinawan, and James A. Harrington  »View Author Affiliations

Applied Optics, Vol. 35, Issue 7, pp. 1077-1082 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (347 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Flexible hollow glass waveguides with bore diameters as small as 250 μm have been developed for 3-μm laser delivery. All the guides exhibit straight losses between 0.10 and 1.73 dB/m, and the loss increases to between 2.4 and 5.1 dB/m upon bending 1 m of the guides into 15-cm-diameter coils. This behavior is shown to depend strongly on the launch conditions and mode quality of the input beam. The waveguides are capable of efficiently delivering up to 8 W of Er:YAG laser power with proper input coupling, and they are suitable for use in both medical and industrial applications.

© 1996 Optical Society of America

Original Manuscript: August 7, 1995
Published: March 1, 1996

Rebecca L. Kozodoy, Antonio T. Pagkalinawan, and James A. Harrington, "Small-bore hollow waveguides for delivery of 3-μm laser radiation," Appl. Opt. 35, 1077-1082 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. N. Merberg, “Current status of infrared fiber optics for medical laser power delivery,” Lasers Surg. Med. 13, 572–576 (1993).
  2. U. Kubo, Y. Hashishin, H. Tanaka, T. Mochizuki, “Development of optical fiber for medical Er:YAG laser,” in Optical Fibers in Medicine VII, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1649, 34–40 (1992).
  3. G. Merberg, M. Shahriari, J. A. Harrington, G. H. Sigel, “Evaluation of crystalline and chemically durable glass fibers for Er:YAG laser delivery systems,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 216–233 (1990).
  4. A. R. Hilton, “Chalcogenide glass optical fibers,” in Infrared Fiber Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 34–42 (1991).
  5. A. Katzir, R. Arieli, “Long wavelength infrared optical fibers,” J. Non-Cryst. Solids 47, 149–158 (1982).
  6. G. N. Merberg, J. A. Harrington, “Optical and mechanical properties of single-crystal sapphire fibers,” Appl. Opt. 32, 3201–3209 (1993).
  7. D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55, 2170–2172 (1989).
  8. J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D.M. Harris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2396, 4–14 (1995).
  9. T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
  10. Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–68471995).
  11. Y. Matsuura, A. Hongo, M. Miyagi, “Dielectric-coated metallic hollow waveguide for 3-μm Er:YAG, 5-μm CO, and 10.6-μm CO2 laser light transmission,” Appl. Opt. 29, 2213–22141990).
  12. Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–66011993).
  13. N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
  14. C. C. Gregory, J. A. Harrington, “Attenuation, modal, and polarization properties of n < 1, hollow dielectric waveguides,” Appl. Opt. 32, 5302–53091993).
  15. A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).
  16. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
  17. S. J. Saggese, J. A. Harrington, G. H. Sigel, “Attenuation of incoherent infrared radiation in hollow sapphire and silica waveguides,” Opt. Lett. 16, 27–29 (1991).
  18. M. Miyagi, S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited