OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 7 — Mar. 1, 1996
  • pp: 1095–1106

Uniform-load and actuator influence functions of a thin or thick annular mirror: application to active mirror support optimization

Luc Arnold  »View Author Affiliations


Applied Optics, Vol. 35, Issue 7, pp. 1095-1106 (1996)
http://dx.doi.org/10.1364/AO.35.001095


View Full Text Article

Enhanced HTML    Acrobat PDF (405 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Explicit analytical expressions are derived for the elastic deformation of a thin or thick mirror of uniform thickness and with a central hole. Thin-plate theory is used to derive the general influence function, caused by uniform and/or discrete loads, for a mirror supported by discrete points. No symmetry considerations of the locations of the points constrain the model. An estimate of the effect of the shear forces is added to the previous pure bending model to take into account the effect of the mirror thickness. Two particular cases of general influence are considered: the actuator influence function and the uniform-load (equivalent to gravity in the case of a thin mirror) influence function for a ring support of k discrete points with k-fold symmetry. The influence of the size of the support pads is studied. A method for optimizing an active mirror cell is presented that couples the minimization of the gravity influence function with the optimization of the combined actuator influence functions to fit low-order aberrations. These low-spatial-frequency aberrations can be of elastic or optical origin. In the latter case they are due, for example, to great residual polishing errors corresponding to the soft polishing specifications relaxed for cost reductions. Results show that the correction range of the active cell can thus be noticeably enlarged, compared with an active cell designed as a passive cell, i.e., by minimizing only the deflection under gravitational loading. In the example treated here of the European Southern Observatory's New Technology Telescope I show that the active correction range can be enlarged by ∼50% in the case of third-order astigmatic correction.

© 1996 Optical Society of America

History
Original Manuscript: January 25, 1995
Revised Manuscript: July 31, 1995
Published: March 1, 1996

Citation
Luc Arnold, "Uniform-load and actuator influence functions of a thin or thick annular mirror: application to active mirror support optimization," Appl. Opt. 35, 1095-1106 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-7-1095

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited