OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 8 — Mar. 10, 1996
  • pp: 1205–1211

Integration of refractive micro-optical elements with differential-pair optical-thyristor arrays

C. Passon, J. Moisel, N. McArdle, W. Eckert, K.-H. Brenner, M. Kuijk, and P. Heremans  »View Author Affiliations

Applied Optics, Vol. 35, Issue 8, pp. 1205-1211 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (716 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a refractive micr-optical system by using ion-exchange microlenses and microprisms, which are combined to generate a superposition of two shifted images. The microlenses, fabricated with field-assisted Ag–Na exchange, achieve diffraction-limited imaging with a single-lens system and with a double-lens system for a field of 800 μm × 800 μm. Furthermore, we demonstrate cascading of two separate differential-pair optical-thyristor arrays by transcribing the information of a source array onto a second destination array.

© 1996 Optical Society of America

Original Manuscript: June 19, 1995
Revised Manuscript: November 7, 1995
Published: March 10, 1996

C. Passon, J. Moisel, N. McArdle, W. Eckert, K.-H. Brenner, M. Kuijk, and P. Heremans, "Integration of refractive micro-optical elements with differential-pair optical-thyristor arrays," Appl. Opt. 35, 1205-1211 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Fukui, K. Kitayama, “Image logic algebra and its optical implementations,” Appl. Opt. 31, 581–591 (1992).
  2. A. Louri, “Optical content-addressable parallel processor: architecture, algorithms, and design concepts,” Appl. Opt. 31, 3241–3258 (1992).
  3. J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2521 (1990).
  4. K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–237 (1994).
  5. K.-H. Brenner, “Techniques for integrating 3D-optical systems,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1544, 263–270 (1991).
  6. J. Jahns, B. Acklin, “Integrated planar optical imaging system with high interconnection density” Opt. Lett. 18, 1594–1596 (1993).
  7. J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
  8. J. Tanida, Y. Ichioka, “OPALS: optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986).
  9. J. Tanida, D. Miyasaki, Y. Ichioka, “H-OPALS: hybrid optical parallel array logic system,” in Topical Meeting on Optical Computing, Z. I. Alferov, J. W. Goodman, A. L. Mikaelian, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1806, 568–574 (1992).
  10. G. Lohmann, K.-H. Brenner, “Digital optical processor based on cellular automata,” in Digital Image Processingand Computer Graphics, E. Wenger, L. Dimitrov, eds., (Oldenburg, Munich, 1991), pp. 152–172.
  11. K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054 (1986).
  12. K.-H. Brenner, “Programmable optical processor based on symbolic substitution,” Appl. Opt. 27, 1687–1691 (1988).
  13. D. Fey, K.-H. Brenner, “Digital optical arithmetic based on systolic arrays and symbolic substitution logic,” Opt. Comput. 1, 153–167 (1990).
  14. Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
  15. D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist” J. Meas. Sci. Technol. 1, 759–766 (1990).
  16. S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer” Opt. Eng. 32, 1322–1324 (1993).
  17. M. Oikawa, K. Iga, “Distributed-index planar microlens,” Appl. Opt. 21, 1052–1056 (1982).
  18. J. Bähr, K.-H. Brenner, S. Sinzinger, W. Singer, T. Spick, M. Testorf, “Index-distributed planar microlenses for the three-dimensional micro-optics fabricated by silver-sodium ion exchange inBGG35 substrates,” Appl. Opt. 33, 5919–5924 (1994).
  19. J. Bähr, K.-H. Brenner, “Realisation of 0.2-N.A. microlenses by field-assisted Ag–Na ion-exchange” presented at the European Optical Society Topical Meeting on Microlens Arrays, Teddington, U.K., May 1995.
  20. E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–36 (1986).
  21. K.-H. Brenner, M. Kufner, S. Kumer, J. Moisel, A. Müller, S. Sinzinger, M. Testorf, J. Gottert, J. Mohr, “Application of three-dimensional micro-optical components formed by lithography, electroforming and plastic molding,” Appl. Opt. 32, 6464–6469 (1993).
  22. J. Moisel, K.-H. Brenner, “Demonstration of a 3D integrated refractive microsystem,” presented at the International Conference on Optical Computing, Edinburgh, U.K., 22–25 August 1994.
  23. M. Kuijk, B. Knüpfer, P. Heremans, R. Vounckx, G. Borghs, “Down-scaling differential pairs of depleted optical thyristors” IEEE Photon. Technol. Lett. 7, 646–648 (1995).
  24. P. Heremans, M. Kuijk, D. A. Suda, R. Vounckx, R. E. Hayes, G. Borghs, “Fast turn-off of two terminal double heterojunction optical thyristors” Appl. Phys. Lett. 61, 1326–1328 (1992).
  25. P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Differential optical PnpN switch operating at 16 Mhz with 250 fJ optical input energy” Appl. Phys. Lett. 65, 19–21 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited