OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 8 — Mar. 10, 1996
  • pp: 1269–1281

Experimental free-space optical network for massively parallel computers

S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, and T. Suzaki  »View Author Affiliations


Applied Optics, Vol. 35, Issue 8, pp. 1269-1281 (1996)
http://dx.doi.org/10.1364/AO.35.001269


View Full Text Article

Enhanced HTML    Acrobat PDF (448 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A free-space optical interconnection scheme is described for massively parallel processors based on the interconnection-cached network architecture. The optical network operates in a circuit-switching mode. Combined with a packet-switching operation among the circuit-switched optical channels, a high-bandwidth, low-latency network for massively parallel processing results. The design and assembly of a 64-channel experimental prototype is discussed, and operational results are presented.

© 1996 Optical Society of America

History
Original Manuscript: June 27, 1995
Revised Manuscript: October 16, 1995
Published: March 10, 1996

Citation
S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, and T. Suzaki, "Experimental free-space optical network for massively parallel computers," Appl. Opt. 35, 1269-1281 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-8-1269


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
  2. I. Redmond, E. Schenfeld, “A distributed, reconfigurable free-space optical interconnection network for massively parallel processing architectures,” in Proceedings of the Optical Computing Conference 1994 (Institute of Physics, Bristol, U.K., 1995), pp. 215–218.
  3. S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, T. Suzaki, “Massively optical interconnections (MOI): interconnections for massively parallel processing systems,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest (Optical Society of America,Washington, D.C., 1995), pp. 8–10.
  4. V. Gupta, E. Schenfeld, “Performance analysis of a synchronous, circuit-switched interconnection cached network,” in Proceedings of the Eighth ACM International Conference on Supercomputing (ICS’94) (Association for Computing Machinery, New York, 1994).
  5. V. Gupta, E. Schenfeld, “NetSim—a tool for modeling the performance of circuit switched multicomputer networks,” in Proceedings of the Seventh International Conference on Modeling Techniques and Tools for Computer Performance Evaluation (Springer-Verlag, New York, 1994).
  6. V. Gupta, E. Schenfeld, “Acomparative performance study of an interconnection cached network,” in Proceedings of the Twenty-Third International Conference on Parallel Processing(ICPP) (CRC, Boca Raton, Fla., 1994), Vol. I, pp. 191–195.
  7. Y.-D. Lyuu, E. Schenfeld, “Parallel graph contraction with applications to a reconfigurable parallel architecture,” in Proceedings ofthe Twenty-Third International Conference on Parallel Processing(ICPP) (CRC, Boca Raton, Fla., 1994), Vol. III, pp. 258–265.
  8. V. Gupta, E. Schenfeld, “A heuristic approach for embed- ding communication patterns in an interconnection cached parallel processing network,” in Proceedings of the IPPS’93 (IEEE Computer Society, Los Alamitos, Calif., 1993), pp. 291–298.
  9. V. Gupta, E. Schenfeld, “Combining message switching and reconfiguration in the interconnection cached network,” in Proceedings of the IEEE International Symposium on Parallel Architectures, Algorithms, and Networks(ISPAN’94), (IEEE Computer Society, Los Alamitos, Calif., 1994), pp. 143–150.
  10. Y.-D. Lyuu, E. Schenfeld, “MICA: a mapped interconnec- tion-cached architecture,” in Proceedings of the Fifth IEEE Symposium on the Frontiers of Massively Parallel Computation (IEEE Computer Society, Los Alamitos, Calif., 1995), pp. 80–89.
  11. Y.-D. Lyuu, E. Schenfeld, “Total exchange on a reconfigu-rable architecture,” in Proceedings of the Fifth IEEE Symposium on Parallel and Distributed Processing (SPDP) (IEEE Computer Society, Los Alamitos, Calif., 1993), pp. 2–11.
  12. Y.-D. Lyuu, E. Schenfeld, “New algorithms for matrix operations with applications to a reconfigurable parallel architecture,” in Proceedings of the Seventh International Conference on Parallel and Distributed Computing Systems (International Society of Computers and their Applications, Raleigh, N.C., 1994), pp. 836–841.
  13. E. Schenfeld, “Massively parallel processing with optical interconnections: what can be, should be and must not be done by optics,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 16–18.
  14. G. S. Almasi, A. Gottlieb, Highly Parallel Computing, 2nd ed. (Benjamin/Cummings, New York, 1994).
  15. C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech. J. 32, 406–424 (1953).
  16. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
  17. D. A. B. Miller, “Optics for low-energy communication inside digital processors,” Opt. Lett. 14, 146–148 (1989).
  18. “STRINGS—Bull serial link technology,” Bull Corp. data sheet (Bull Corporation, Paris, 1995).
  19. “BULLIT—Bull serial link technology,” Bull Corp. data sheet (Bull Corporation, Paris, 1995).
  20. “Field programmable interconnection,” Aptix Corp. data sheet (Aptix Corporation, San Jose, Calif., 1994).
  21. D. Feitelson, L. Rudolph, E. Schenfeld, “An optical interconnection network with 3-D layout and distributed control,” in Optical Interconnections and Networks, H. Bartelt, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1281, 54–65 (1990).
  22. B. Moller, E. Zeeb, T. Hackbarth, K. J. Eberling, “High speed performance of 2-D vertical-cavity laser diode arrays,” IEEE Photon. Technol. Lett. 6, 1056–1058 (1994).
  23. R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983), Subsection 5.2, pp. 75–80.
  24. J. Jahns, S. H. Lee, eds., Optical Computing Hardware (Academic, New York, 1994), Chap. 5, pp. 113–136 (PML's); Chap. 4, pp. 137–168 (DML's).
  25. F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” Appl. Opt. 33, 1601–1618 (1994).
  26. B. Moller, U. Fiedler, T. Wipiejewski, E. Zeeb, K. Panzlaff, K. J. Ebeling, “Generation of 40 Gbit/s RZ data rates by gain switching of vertical-cavity laser diodes,” in Proceedings of the Nineteenth European Conference on Optical Communication (Swiss Electrotechnical, Zurich, Switzerland, 1993), pp. 409–412.
  27. T. Mukaihara, F. Koyama, K. Iga, “Stress effect for polarization control of surface emitting lasers,” Electron. Lett. 28, 555 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited