OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 8 — Mar. 10, 1996
  • pp: 1344–1366

Photorefractive processing for large adaptive phased arrays

Robert T. Weverka, Kelvin Wagner, and Anthony Sarto  »View Author Affiliations


Applied Optics, Vol. 35, Issue 8, pp. 1344-1366 (1996)
http://dx.doi.org/10.1364/AO.35.001344


View Full Text Article

Enhanced HTML    Acrobat PDF (558 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An adaptive null-steering phased-array optical processor that utilizes a photorefractive crystal to time integrate the adaptive weights and null out correlated jammers is described. This is a beam-steering processor in which the temporal waveform of the desired signal is known but the look direction is not. The processor computes the angle(s) of arrival of the desired signal and steers the array to look in that direction while rotating the nulls of the antenna pattern toward any narrow-band jammers that may be present. We have experimentally demonstrated a simplified version of this adaptive phased-array-radar processor that nulls out the narrow-band jammers by using feedback-correlation detection. In this processor it is assumed that we know a priori only that the signal is broadband and the jammers are narrow band. These are examples of a class of optical processors that use the angular selectivity of volume holograms to form the nulls and look directions in an adaptive phased-array-radar pattern and thereby to harness the computational abilities of three-dimensional parallelism in the volume of photorefractive crystals. The development of this processing in volume holographic system has led to a new algorithm for phased-array-radar processing that uses fewer tapped-delay lines than does the classic time-domain beam former. The optical implementation of the new algorithm has the further advantage of utilization of a single photorefractive crystal to implement as many as a million adaptive weights, allowing the radar system to scale to large size with no increase in processing hardware.

© 1996 Optical Society of America

History
Original Manuscript: June 26, 1995
Revised Manuscript: October 26, 1995
Published: March 10, 1996

Citation
Robert T. Weverka, Kelvin Wagner, and Anthony Sarto, "Photorefractive processing for large adaptive phased arrays," Appl. Opt. 35, 1344-1366 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-8-1344


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. B. Lambert, M. Arm, A. Aimette, “Electro-optical signal processing for phased-array antennas,” in Optical and Electro-Optic Information Processing, J. Tippett, ed. (MIT, Cambridge, Mass., 1965).
  2. V. C. Vannicola, “Optical processing for adaptive radar systems,” in Optical Signal Processing for C3I, W. Miceli, ed., Proc. Soc. Photo-Opt. Instrum. Eng.209, 32–37 (1979).
  3. D. Psaltis, J. Hong, “Adaptive acoustooptic processor,” in Analog Optical Processing and Computing, H. J. Caulfield, ed., Proc. Soc. Photo-Opt. Instrum. Env.519, 62–68 (1984).
  4. C. W. Carroll, B. V. K. V. Kumar, “Adaptive phased aray radar processing on a multichannel acousto-optic linear algebra system: experimental results,” in Optoelectronic Signal Processing for Phased-Array Antennas, K. Bhasin, B. Hendrickson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.886, 203–213 (1988).
  5. S. Lin, J. Hong, R. Boughton, D. Psaltis, “Broad-band beamforming via acousto-optics,” in Advances in Optical Information Processing III, D. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.936, 152–162 (1988).
  6. D. I. Voskresenskii, A. I. Grinev, E. N. Voronin, Electrooptical Arrays (Springer-Verlag, New York, 1989).
  7. W. A. Penn, R. Wasiewicz, R. M. Iodice, “Optical adaptive multipath canceller for surveillance radar,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. Hendrickson, G. Koepf, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1217, 151–160 (1990).
  8. R. M. Montgomery, “Acousto-optic/photorefractive processor for adaptive antenna arrays,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. Hendrickson, G. Koepf, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1217, 207–217 (1990.
  9. R. M. Montgomery, M. R. Lange, “Photorefractive adaptive filter structure with 40-dB interference rejection,” Appl. Opt. 30, 2844–2849 (1991).
  10. C. W. Keefer, J. E. Malowicki, P. M. Payson, “Wideband operation of a photorefractive based adaptive processor,” in Analog Photonics, A. Pirich, P. Sierak, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1790, 145–156 (1992).
  11. D. R. Pape, P. Wasilousky, M. Krainak, “A high performance apodized phased array Bragg cell,” in Optical Technology for Microwave Applications III, S. K. Yao, ed., Proc. Soc. Photo-Opt. Instrum. Eng.789, 117–126 (1987).
  12. R. T. Weverka, K. Wagner, “Adaptive phased-array radar processing using photrefractive crystals,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1217, 173–182 (1990).
  13. R. T. Weverka, K. Wagner, “Staring phased-array radar using photorefractive crystals,” in Optical Information Processing Systems and Architectures III, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1564, 676–684 (1991).
  14. R. T. Weverka, A. W. Sarto, K. Wagner, “Photorefractive phased-array-radar processor dynamics,” in Optical Computing, Vol. 7 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 111–114.
  15. A. W. Sarto, R. T. Weverka, K. Wagner, “Beam-steering and jammer-nulling photorefractive phased-array radar processor,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. Hendrickson, ed., Proc. Soc. Photo-Opt. Instrum. Env.2155, 378–388 (1994).
  16. A. W. Sarto, R. T. Weverka, K. Wagner, “Adaptive beam-steering and jammer-nulling photorefractive phasedarray radar processor,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 233–235.
  17. B. Widrow, P. E. Mantey, L. J. Griffiths, B. B. Goode, “Adaptive antenna systems,” Proc. IEEE 55, 2143–2159 (1967).
  18. R. T. Compton, Adaptive Antennas (Prentice-Hall, Engle-wood Cliffs, N.J., 1988), Chap. 2.
  19. B. Widrow, S. D. Stearns, Adaptive Signal Processing, Prentice-Hall Signal Processing Series (Prentice-Hall, Engle-wood Cliffs, N.J., 1985).
  20. L. J. Griffiths, C. W. Jim, “An alternative approach to linearly constrained adaptive beamforming,” IEEE Trans. Antennas Propag. AP-30, 27–34 (1982).
  21. L. L. Scharf, D. C. Farden, “Optimum and adaptive array processing in frequency-wavenumber space,” in USAG/NUSC Workshop on Multidimensional Analysis of Acoustic Fields (Department of Commerce, Washington, D.C., 1973), available from National Technical Information Service, Springfield, Va., order no. CSCL20/1.
  22. J. F. Rhodes, “Adaptive filter with a time-domain implementation using correlation cancellation loops,” Appl. Opt. 22, 282–287 (1983).
  23. T. R. Bader, “AO spectrum analysis: a high performance hybrid technique,” Appl. Opt. 18, 1668–1672 (1979).
  24. B. M. Hendrickson, ed., Optoelectronic Signal Processing for Phased-Array Antennas II, Proc. Soc. Photo-Opt. Instrum. Eng.1217 (1990).
  25. S. K. Yao, B. M. Hendrickson, eds., Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, Proc. Soc. Photo-Opt. Instrum. Eng.1703, (1992).
  26. B. M. Hendrickson, ed., Optoelectronic Signal Processing for Phased-Array Antenns IV, Proc. Soc. Photo-Opt. Instrum. Eng.2155 (1994).
  27. M. Kam, J. Wilcox, P. R. Herczfeld, “Design for steering accuracy in antenna arrays using shared optical phase shifters,” IEEE Trans. Antennas Propag. 37,1102–1108 (1989).
  28. W. S. Birkmayer, M. J. Wale, “Proof-of-concept model of a coherent optical beam-forming network,” Inst. Electr. Eng. Part Proc. J 139, 301–304 (1992).
  29. M. Volker, “Coherent all-fibre optical beam-steering technique for phased-array antennas,” Inst. Electr. Eng. Part Proc. J 139, 305–308 (1992).
  30. R. D. Esman, M. Y. Fankel, J. L. Dexter, L. G. G., M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
  31. P. W. Howells, “Exploration in fixed and adaptive resolution at GE and SURC,” IEEE Trans. Antennas Propag. AP-24, 575–584 (1976).
  32. S. P. Applebaum, “Adaptive arrays,” IEEE Trans. Antennas Propag. AP-24, 585–598 (1976).
  33. G. C. Valley, M. B. Klein, “Optimal properties of photore- fractive materials for optical data processing,” Opt. Eng. 22, 706–711 (1983).
  34. P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–518 (1989).
  35. E. M. Alexander, R. W. Gammon, “The Fabry–Perot etalon as an RF frequency channelizer,” in Solid State Optical Control Devices, P. Yeh, ed., Proc. Soc. Photo-Opt. Instrum. Eng.464, 45–52 (1984).
  36. A. Gabel, L. S. Lee, I. C. Chang, “Front-end RF channelization using optical techniques,” in Optical Technology for Microwave Applications, S. K. Yao, ed., Proc. Soc. Photo-Opt. Instrum. Eng.477, 150–154 (1984).
  37. M. A. Rob, “Limitations of a wedged etalon for high resolution linewidth measurements,” Opt. Lett. 15, 604–606 (1990).
  38. D. Gabor, G. W. Stroke, “The theory of deep holograms,” Proc. R. Soc. London Ser. A 304, 275–289 (1968).
  39. A. W. Sarto, R. T. Weverka, K. Wagner, S. Weaver, “Wide angular aperture holograms in photorefractive crystal using orthogonally polarized write and read beams,” in Photorefrac-tive Materials, Effects, and Devices, J. Feinberg, D. Anderson, eds. (National Institute of Standards and Technology, Gaithersburg, Md., 1995) pp. 214–217.
  40. L. H. Gesell, R. E. Feinleib, J. L. Lafuse, T. M. Turpin, “Acousto-optic control of time delays for array beam steering,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2155, 194–204 (1994).
  41. R. T. Weverka, K. Wagner, “Wide angular aperture acoustooptic Bragg cell,” in Devices for Optical Processing, D. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 66–72 (1992).
  42. J. Xu, R. T. Weverka, K. Wagner, “Wide angular aperture lithium niobate acoustooptic Bragg cells,” in Advances in Optical Information Processing VI, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2240, 96–107 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited