OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 8 — Mar. 10, 1996
  • pp: 1344–1366

Photorefractive processing for large adaptive phased arrays

Robert T. Weverka, Kelvin Wagner, and Anthony Sarto  »View Author Affiliations


Applied Optics, Vol. 35, Issue 8, pp. 1344-1366 (1996)
http://dx.doi.org/10.1364/AO.35.001344


View Full Text Article

Enhanced HTML    Acrobat PDF (558 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An adaptive null-steering phased-array optical processor that utilizes a photorefractive crystal to time integrate the adaptive weights and null out correlated jammers is described. This is a beam-steering processor in which the temporal waveform of the desired signal is known but the look direction is not. The processor computes the angle(s) of arrival of the desired signal and steers the array to look in that direction while rotating the nulls of the antenna pattern toward any narrow-band jammers that may be present. We have experimentally demonstrated a simplified version of this adaptive phased-array-radar processor that nulls out the narrow-band jammers by using feedback-correlation detection. In this processor it is assumed that we know a priori only that the signal is broadband and the jammers are narrow band. These are examples of a class of optical processors that use the angular selectivity of volume holograms to form the nulls and look directions in an adaptive phased-array-radar pattern and thereby to harness the computational abilities of three-dimensional parallelism in the volume of photorefractive crystals. The development of this processing in volume holographic system has led to a new algorithm for phased-array-radar processing that uses fewer tapped-delay lines than does the classic time-domain beam former. The optical implementation of the new algorithm has the further advantage of utilization of a single photorefractive crystal to implement as many as a million adaptive weights, allowing the radar system to scale to large size with no increase in processing hardware.

© 1996 Optical Society of America

History
Original Manuscript: June 26, 1995
Revised Manuscript: October 26, 1995
Published: March 10, 1996

Citation
Robert T. Weverka, Kelvin Wagner, and Anthony Sarto, "Photorefractive processing for large adaptive phased arrays," Appl. Opt. 35, 1344-1366 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-8-1344

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited