OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 8 — Mar. 10, 1996
  • pp: 1372–1380

Optical lateral inhibition networks that use self-linearized self-electro-optic-effect devices: theory and experiment

Brian Kelly, Paul Horan, Frank A. P. Tooley, Mohammad R. Taghizadeh, and John Hegarty  »View Author Affiliations


Applied Optics, Vol. 35, Issue 8, pp. 1372-1380 (1996)
http://dx.doi.org/10.1364/AO.35.001372


View Full Text Article

Enhanced HTML    Acrobat PDF (374 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The self-linearized self-electro-optic-effect-device (SL-SEED) phenomenon observed with a quantumwell modulator and photodiode serial combination is one of the few practical routes to optical subtraction. A family of optical lateral inhibition architectures based on the SL-SEED that incorporate optical feedback is introduced and their operation confirmed in simulation. A successful experimental demonstration based on these ideas, performing edge-contrast enhancement by lateral inhibition, is described. System interconnections are both optical and electrical, with nonlocal interconnections being made optically by the use of diffractive elements.

© 1996 Optical Society of America

History
Original Manuscript: June 15, 1995
Revised Manuscript: August 15, 1995
Published: March 10, 1996

Citation
Brian Kelly, Paul Horan, Frank A. P. Tooley, Mohammad R. Taghizadeh, and John Hegarty, "Optical lateral inhibition networks that use self-linearized self-electro-optic-effect devices: theory and experiment," Appl. Opt. 35, 1372-1380 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-8-1372


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. E. Jernigan, R. J. Belshaw, G. F. McLean, “Nonlinear lateral inhibition and image processing,” in Sensory Neural Networks: Lateral Inhibition, B. Nabet, R. B. Pinter, eds. (CRC, Boca Raton, Fla., 1991),p. 27.
  2. S. Kakizaki, P. Horan, “Limitations of optical lateral interconnection of smart pixel arrays,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), 201–203.
  3. N. A. Farhat, D. Psaltis, A. Prata, E. Paek, “Optical implementation of the Hopfield model,” Appl. Opt. 24, 1469–1475 (1985).
  4. C. H. Wang, B. K. Jenkins, “Subtracting incoherent optical neuron model: analysis, experiment, and applications,” Appl. Opt. 29, 2171–2186 (1990).
  5. I. Shariv, A. A. Friesem, “All-optical neural network with inhibitory neurons,” Opt. Lett. 14, 485–487 (1989).
  6. W. Kawakami, H. Yoshinaga, K. Kitayama, “Demonstration of an optical inhibitory neural network,” Opt. Lett. 14, 984–986 (1989).
  7. D. A. B. Miller, D. S. Chemla, T. C. Dame, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. 21, 1462–1475 (1985).
  8. A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).
  9. D. A. B. Miller, “Novel analog self-electrooptic-effect devices,” IEEE J. Quantum Electron. 29, 678–698 (1993).
  10. B. L. Shoop, B. Pezeshki, J. W. Goodman, J. S. Harris, “Noninterferometric optical subtraction using reflection-electroabsorption modulators,” Opt. Lett. 17, 58–60 (1992).
  11. K. K. Law, J. L. Merz, L. A. Coldren, “Self-linearised optical modulation of a normally-on asymmetric Fabry-Perot modulator with high contrast, low insertion loss and low operating energy,” Jpn. J. Appl. Phys. 31, L1699–L1701 (1992).
  12. E. A. De Souza, D. A. B. Miller, “Spatial image differentiation using analog differential self-electrooptic effect devices,” presented at the IEEE/LEOS Summer Topical Meeting on Smart Pixels, Lake Tahoe, Nev., July 1994, paper PD2.
  13. M. Whitehead, A. Rivers, G. Parry, “Low voltage multiple quantum well reflection modulator with on:off ratio >100:1,” Electron. Lett. 25, 52–58 (1989).
  14. P. Horan, “Optical lateral inhibition networks using self-linearised SEED's,” in Proceedings of the International Conference on Optical Computing, Vol. 139 of AOP Conference Series, B. S. Wherrett, ed. (Institute of Physics, Bristol, UK, 1995), pp. 403–406.
  15. B. Kelly, J. Hegarty, P. Horan, F. A. P. Tooley, M. R. Taghizadeh, “Demonstration of a laterally inhibitive optical preprocessor using quantum well Fabry–Perot modulators,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper OTuE13, pp. 195–197.
  16. Y. Cheng, Z. Wan, “Distribution of winners in local lateral inhibition,” in Proceedings ofthe International Joint Conference on Neural Networks, IEEE 92 CH 33114-6, (IEEE, New York, 1992), pp. III-456–III-460.
  17. T. Kohonen, “The self-organizing map,” Proc. IEEE 78, 1464–1480 (1990).
  18. S. Grossberg, “Nonlinear neural networks: principles, mechanisms, and architectures,” Neural Networks 1, 17–61 (1988).
  19. A. Jennings, P. Horan, B. Kelly, J. Hegarty, “Asymmetric Fabry-Perot device arrays with low insertion loss and high uniformity,” IEEE Photonics Technol. Lett. 4, 858–860 (1992).
  20. P. Horowitz, W. Hill, The Art of Electronics, 2nd ed. (Cambridge U. Press, Cambridge, 1989), p. 88.
  21. F. A. P. Tooley, S. Wakelin, M. R. Taghizadeh, “Interconnects for a symmetric self-electro-optic-effect device cellular-logic image processor,” Appl. Opt. 33, 1398–1403 (1994).
  22. A. J. Moseley, M. Q. Kearley, R. C. Morris, D. J. Robbins, J. Thompson, M. J. Goodwin, “Uniform 8 × 8 array InGaAs/InP multiquantum well Fabry-Perot modulators for flipchip solder bond hybrid optical interconnect,” Electron. Lett. 28, 12–24 (1992).
  23. T. L. Worchesky, K. J. Ritter, R. Martin, B. Lane, “Large arrays of spatial light modulators hybridised to silicon integrated circuits,” in Spatial Light Modulators, Vol. 9 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 1–5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited