OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 9 — Mar. 20, 1996
  • pp: 1409–1423

Thermally induced strain and birefringence calculations for a Nd:YAG rod encapsulated in a solid pump light collector

Stuart D. Jackson and James A. Piper  »View Author Affiliations


Applied Optics, Vol. 35, Issue 9, pp. 1409-1423 (1996)
http://dx.doi.org/10.1364/AO.35.001409


View Full Text Article

Enhanced HTML    Acrobat PDF (464 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Calculations and experimental measurements of the thermally induced strain and birefringence are presented for a diode-pumped Nd:YAG rod that is encapsulated in a prismatic pump light collector. A numerical model is developed to determine the spatiotemporal stress-induced strain distribution across the prism, index-matching fixant, and laser rod, and the birefringence that arises from the stress-induced strain within the laser rod. Calculations of the birefringence are compared with polarscopic measurements and display good agreement. Support for the rod on all sides is provided by the prism and fixant, and the distribution and degree of the stress-induced strain (and birefringence) within the laser rod are therefore influenced by the geometry and composition of the prism and fixant. These strains are thermomechanical in origin and are primarily a function of the elastic modulus of the fixant and the temperature of the system. Such stress-induced strains are additional to those strains that are produced from temperature gradients across the laser rod and result from the laser rod being constrained from expanding. Collectors utilizing index-matching fluid as the encapsulant display the smallest measure of birefringence relating to the temperature gradients in the rod. However, for collectors utilizing solid fixants (with significant elastic modulus), an increase in the birefringence results. In this case collector designs that have the laser rod located in a symmetrically shaped prism are effective in reducing the nonuniform pressures on the sides of the rod and therefore the birefringence. 1996 Optical Society of America r

© 1996 Optical Society of America

History
Original Manuscript: January 3, 1995
Revised Manuscript: May 19, 1995
Published: March 20, 1996

Citation
Stuart D. Jackson and James A. Piper, "Thermally induced strain and birefringence calculations for a Nd:YAG rod encapsulated in a solid pump light collector," Appl. Opt. 35, 1409-1423 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-9-1409

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited