Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Thermally induced strain and birefringence calculations for a Nd:YAG rod encapsulated in a solid pump light collector

Not Accessible

Your library or personal account may give you access

Abstract

Calculations and experimental measurements of the thermally induced strain and birefringence are presented for a diode-pumped Nd:YAG rod that is encapsulated in a prismatic pump light collector. A numerical model is developed to determine the spatiotemporal stress-induced strain distribution across the prism, index-matching fixant, and laser rod, and the birefringence that arises from the stress-induced strain within the laser rod. Calculations of the birefringence are compared with polarscopic measurements and display good agreement. Support for the rod on all sides is provided by the prism and fixant, and the distribution and degree of the stress-induced strain (and birefringence) within the laser rod are therefore influenced by the geometry and composition of the prism and fixant. These strains are thermomechanical in origin and are primarily a function of the elastic modulus of the fixant and the temperature of the system. Such stress-induced strains are additional to those strains that are produced from temperature gradients across the laser rod and result from the laser rod being constrained from expanding. Collectors utilizing index-matching fluid as the encapsulant display the smallest measure of birefringence relating to the temperature gradients in the rod. However, for collectors utilizing solid fixants (with significant elastic modulus), an increase in the birefringence results. In this case collector designs that have the laser rod located in a symmetrically shaped prism are effective in reducing the nonuniform pressures on the sides of the rod and therefore the birefringence. 1996 Optical Society of America r

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Thermal modeling of solid nonfocusing pump-light collectors used for diode-pumped Nd:YAG lasers

Stuart D. Jackson and James A. Piper
Appl. Opt. 34(12) 2012-2023 (1995)

Theoretical modeling of a diode-pumped Nd:YAG laser with a solid nonfocusing pump light collector

Stuart D. Jackson and James A. Piper
Appl. Opt. 33(12) 2273-2283 (1994)

Encapsulated rod for efficient thermal management in diode-side-pumped Nd:YAG lasers

Stuart D. Jackson and James A. Piper
Appl. Opt. 35(15) 2562-2565 (1996)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.