OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 9 — Mar. 20, 1996
  • pp: 1492–1499

Theoretical waveguide optimization in a Ti:LiNbO3 Mach–Zehnder modulator by Mg diffusion

I. Mansour and F. Caccavale  »View Author Affiliations

Applied Optics, Vol. 35, Issue 9, pp. 1492-1499 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (303 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Magnesium diffusion can be used to optimize the characteristics and performance of a Ti:LiNbO3 Mach–Zehnder modulator. Suitable use of titanium/magnesium double diffusion reduces fiber–waveguide coupling loss, minimizes the modulator size by increasing the bend radius of curvature without increasing bend losses, and decreases separation of the modulator arms. The proposed method also makes it possible to reduce the modulating voltage by improvement of guided-wave lateral confinement. Secondary ion mass spectrometry and m-line techniques are used to characterize Ti/Mg:LiNbO3 waveguides. A numerical optimization procedure based on the full vectorial beam-propagation method is presented.

© 1996 Optical Society of America

Original Manuscript: March 22, 1995
Revised Manuscript: September 26, 1995
Published: March 20, 1996

I. Mansour and F. Caccavale, "Theoretical waveguide optimization in a Ti:LiNbO3 Mach–Zehnder modulator by Mg diffusion," Appl. Opt. 35, 1492-1499 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. C. Alferness, “Guided-wave devices for optical communication,” IEEE J. Quantum Electron. QE-17, 946–959 (1981).
  2. J. Noda, “Ti diffused LiNbO3 waveguides and modulators,” J. Opt. Commun. 1, 64–73 (1980).
  3. M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” Proc. Inst. Electr. Eng. J 135, 85–91 (1988).
  4. F. Caccavale, P. Chakraborty, A. Capobianco, G. Gianello, I. Mansour, “Characterization and optimization of Ti-diffused LiNbO3 optical waveguides by second diffusion of magnesium,” J. Appl. Phys. 78, 187–193 (1995).
  5. K. Komatsu, S. Yamazaki, M. Kondo, Y. Ohta, “Low-loss broad-band LiNbO3 guided-wave phase modulators using titanium/magnesium double diffusion method,” IEEE J. Lightwave Technol. LT-5, 1239–1245 (1987).
  6. F. Caccavale, P. Chakraborty, I. Mansour, G. Gianello, M. Mazzoleni, M. Elena, “A secondary-ion-mass spectrometry study of magnesium diffusion in lithium niobate,” J. Appl. Phys. 76, 7552–7558 (1994).
  7. C. G. Someda, “Radiation of discrete beams from curved single-mode fibers,” Electron. Lett. 13, 712–713 (1977).
  8. S. K. Korotky, E. A. J. Marcatili, J. J. Veselka, R. H. Besworth, “Greatly reduced losses for small-radius bends in Ti:LiNbO3 waveguides,” Appl. Phys. Lett. 48, 92–94 (1986).
  9. B. Schuüppert, “Reduction of bend losses in Ti:LiNbO3 waveguides through MgO double diffusion,” Electron. Lett. 23, 797–798 (1987).
  10. M. Majd, B. Schuüppert, K. Petermann, “Low-loss Ti:LiNbO3 waveguide bends prepared by MgO in-diffusion,” IEEE J. Lightwave Technol. 8, 1670–1674 (1990).
  11. M. Majd, B. Schüppert, K. Petermann, “90 S-bends in Ti:LiNbO3 waveguides with low losses,” IEEE Photon. Tech-nol. Lett. 5, 806–808 (1993).
  12. I. Mansour, C. G. Someda, “Numerical optimization procedure for low-loss sharp bends in MgO Co-doped Ti:LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 7, 81–83 (1995).
  13. C. De Angelis, “Numerical modelling of bends in optical rib waveguides,” European Transactions on Telecomm. and Related Tech. 3, 73–75 (1992).
  14. E. G. Neumann, W. Richter, “Sharp bends with low losses in dielectric optical waveguides,” Appl. Opt. 22, 1016–1022 (1983).
  15. N. Tanaka, T. Banno, K. Takahashi, T. Shiota, K. Inada, “MgO/Ti bilaterally diffused LiNbO3 optical switch,” Appl. Opt. 29, 5090–5095 (1990).
  16. F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, G. Mussi, “Secondary ion mass spectrometry and near field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345–5350 (1995).
  17. F. Gonella, Dipartimento di Fisica, Università Degali Studi di Padova, Padova, Italy35131 (personal communication, 1994).
  18. J. Noda, M. Fukuma, S. Saito, “Effect of Mg diffusion on Ti-diffused LiNbO3 waveguide,” J. Appl. Phys. 49, 3150–3154 (1978).
  19. M. Heiblum, J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. QE-11, 75–84 (1975).
  20. J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1987).
  21. J. Crank, The Mathematics of Diffusion (Oxford University, New York, 1975), pp. 1–21.
  22. M. S. Stern, “Semi-vectorial polarised finite difference method for optical waveguides with arbitrary index profiles,” Proc. Inst. Electr. Eng. J. 135, 56–63 (1988).
  23. S. Steinberg, M. Guntau, R. Göring, W. Karthe, “Calculation of electrooptically induced refractive index changes of integrated optic devices by the finite-element-method,” J. Opt. Commun. 12, 125–129 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited