OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 9 — Mar. 20, 1996
  • pp: 1500–1506

Fabrication of channel waveguides from sol-gel-processed polyvinylpyrrolidone/SiO2 composite materials

Makoto Yoshida and Paras N. Prasad  »View Author Affiliations


Applied Optics, Vol. 35, Issue 9, pp. 1500-1506 (1996)
http://dx.doi.org/10.1364/AO.35.001500


View Full Text Article

Enhanced HTML    Acrobat PDF (332 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Sol-gel-processed composite materials of polyvinylpyrrolidone (PVP) and SiO2 were studied for optical waveguide applications. PVP is a polymer that can be crosslinked, so it is expected to have high thermal stability after crosslinking. However, thermal crosslinking and thermal decomposition of pure PVP take place around the same temperature, 200 °C, therefore pure PVP had a high optical propagation loss as a result of the absorption of the decomposed molecules after crosslinking. The incorporation of sol-gel-processed SiO2 prevented the thermal decomposition of PVP and provided remarkably low optical propagation losses. The PVP/SiO2 composite material also produced thick (>2-μm) crack-free films when the PVP concentration was 50% or higher. An optical propagation loss of 0.2 dB/cm was achieved at 633 nm in the 50% PVP/SiO2 composite planar waveguide. Several aspects of the thermal stability of the waveguides were evaluated. The slab waveguide was then used for fabrication of channel waveguides with a selective laser-densification technique. This technique used metal lines fabricated with photolithography on the slab waveguide as a light absorbent, and these metal lines were heated by an Ar laser. The resultant channel waveguide had an optical propagation loss of 0.9 dB/cm at 633 nm. This technique provides lower absorption loss and scattering loss compared with the direct laser-densification technique, which uses UV lasers, and produces narrow waveguides that are difficult to fabricate with a CO2 laser.

© 1996 Optical Society of America

History
Original Manuscript: April 17, 1995
Revised Manuscript: September 12, 1995
Published: March 20, 1996

Citation
Makoto Yoshida and Paras N. Prasad, "Fabrication of channel waveguides from sol-gel-processed polyvinylpyrrolidone/SiO2 composite materials," Appl. Opt. 35, 1500-1506 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-9-1500


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. C. Klein, Sol-Gel Technology (Noyes, Park Ridge, N.J., 1988).
  2. M. Bahtat, J. Mugnier, L. Lou, J. Serughetti, “Planar TiO2 waveguide by the sol-gel process: the relationship of structure to properties,” in Sol-Gel Optics II, J. D. Mackensie, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1758, 173–177 (1992).
  3. L. Weisenbach, T. L. Davis, B. J. J. Zelinski, R. L. Roncore, L. A. Weller-Brophy, “Processing of SiO2–TiO2 thin film waveguide,” Mater. Res. Soc. Symp. Proc. 180, 377–382 (1990).
  4. L. Weisenbach, B. J. J. Zelinski, “The attenuation of sol-gel waveguide measured as a function of wavelength and sample age,” in Sol-Gel Optics III, J. D. Mackensie, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2288, 603–639 (1994).
  5. M. Guglielmi, P. Colombo, D. E. Mancinelli, G. C. Righini, S. Pelli, V. Rigato, “Characterization of laser-densified sol-gel films for the fabrication of planar and strip optical waveguides,” J. Non-Cryst. Solids 641, 147–148 (1992).
  6. B. D. Fabes, D. J. Taylor, L. Weisenbach, M. M. Stuppi, D. L. Klein, L. J. Raymond, B. J. J. Zelinski, D. P. Birnie, “Laser processing of channel waveguide structure in sol-gel coatings,” in Sol-Gel Optics, J. D. Mackensie, D. R. Ulrich, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1328, 319–328 (1990).
  7. J. Zieba, Y. Zhang, P. N. Prasad, M. K. Casstevens, R. Burzynski, “Sol-gel-processed inorganic oxide: organic polymer composites for second order nonlinear optical applications,” in Sol-Gel Optics II, J. D. Mackensie, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1758, 403–409 (1992).
  8. C. Li, J. Y. Tseng, K. Morita, C. Lechner, Y. Hu, J. Mackenzie, “Ormosils as matrices in inorganic–organic nanocomposites for various optical applications,” in Sol-Gel Optics II, J. D. Mackensie, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1758, 410–419 (1992).
  9. S. Motakef, J. M. Boulton, G. Teowee, D. R. Uhlmann, B. J. J. Zelinski, “Polyceram planar waveguide and optical properties of polyceram films,” in Sol-Gel Optics II, J. D. Mackensie, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1758, 432–445 (1992).
  10. K. Rose, H. Wolter, W. Glaubitt, “Multifunctional acrylate alkoxysilanes for polymer materials,” Mater. Res. Soc. Symp. Proc. 271, 731–736 (1992).
  11. S. Motakef, J. M. Boulton, D. R. Uhlmann, “Organic–inorganic optical materials,” Opt. Lett. 19, 1125–1127 (1994).
  12. D. Shamrakov, R. Reisfeld, “Superradiant film laser operation in red perylimide dye doped silica-polymethylmeth-acrylate composite,” Chem. Phys. Lett. 213, 47–53 (1993).
  13. H. Krug, F. Tiefensee, P. W. Oliveira, H. Schmidt, “Organic–inorganic composite materials: optical properties of laser patterned and protective coated waveguides,” in Sol-Gel Optics II, J. D. Mackensie, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1758, 448–455 (1992).
  14. A. Morikawa, Y. Iyoku, M. Kakimoto, Y. Imai, “Preparation of new polyimide–silica hybrid materials via the sol-gel process,” J. Mater. Chem. 2, 679–689 (1992).
  15. K. Morikawa, Y. Hu, J. Mackenzie, “Ultrasonic radiation on gelation and properties of ORMOSILs,” Mater. Res. Soc. Symp. Proc. 271, 693–698 (1992).
  16. C. J. Wung, Y. Pang, P. N. Prasad, F. E. Karasz, “Poly(p-phenylene vinylene)-silica composites: a novel sol-gel processed nonlinear optical materials for optical waveguide,” Polymer 32, 605 (1991).
  17. G. S. He, C. J. Wung, G. C. Xu, P. N. Prasad, “Two-dimensional optical grating produced on PPV/V2O5-gel film by ultrashort pulsed laser radiation,” Appl. Opt. 30, 3810–3817 (1991).
  18. C. J. Wung, W. M. K. P. Wijekoon, P. N. Prasad, “Characterization of sol-gel processed poly(p-phenylene vinylene)/silica and V2O5 composites using waveguide Raman, Raman and FTIR,” Polymer 34, 1174–1178 (1993).
  19. K. S. Lee, C. J. Wung, P. N. Prasad, C. Kim, C. K. Park, J. I. Jim, H. K. Shim, “Sol-gel processed conjugated polymers for optical waveguides,” Mol. Cryst. Liq. Cryst. 224, 33–43 (1993).
  20. J. Scheirs, S. W. Bigger, E. T. H. Then, N. C. Billingham, “The application of simultaneous chemiluminescence and thermal analysis for studying the glass transition and oxidative stability of poly (N-vinyl-2-pyrrolidone),” J. Polym. Sci. Polym. Phys. Ed. 31, 287–297 (1993).
  21. T. Holler, H. Bottner, A. Dumbs, “Polymer waveguide for sensor applications,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1774, 308–315 (1992).
  22. E. A. Mendoza, D. J. Ferrell, S. J. Syracuse, A. N. Khalil, R. A. Lieberman, “Photolithography of integrated optic devices in sol-gel glasses,” in Sol-Gel Optics III, J. D. Mackensie, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2288, 580–588 (1994).
  23. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited