OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 9 — Mar. 20, 1996
  • pp: 1500–1506

Fabrication of channel waveguides from sol-gel-processed polyvinylpyrrolidone/SiO2 composite materials

Makoto Yoshida and Paras N. Prasad  »View Author Affiliations


Applied Optics, Vol. 35, Issue 9, pp. 1500-1506 (1996)
http://dx.doi.org/10.1364/AO.35.001500


View Full Text Article

Enhanced HTML    Acrobat PDF (332 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Sol-gel-processed composite materials of polyvinylpyrrolidone (PVP) and SiO2 were studied for optical waveguide applications. PVP is a polymer that can be crosslinked, so it is expected to have high thermal stability after crosslinking. However, thermal crosslinking and thermal decomposition of pure PVP take place around the same temperature, 200 °C, therefore pure PVP had a high optical propagation loss as a result of the absorption of the decomposed molecules after crosslinking. The incorporation of sol-gel-processed SiO2 prevented the thermal decomposition of PVP and provided remarkably low optical propagation losses. The PVP/SiO2 composite material also produced thick (>2-μm) crack-free films when the PVP concentration was 50% or higher. An optical propagation loss of 0.2 dB/cm was achieved at 633 nm in the 50% PVP/SiO2 composite planar waveguide. Several aspects of the thermal stability of the waveguides were evaluated. The slab waveguide was then used for fabrication of channel waveguides with a selective laser-densification technique. This technique used metal lines fabricated with photolithography on the slab waveguide as a light absorbent, and these metal lines were heated by an Ar laser. The resultant channel waveguide had an optical propagation loss of 0.9 dB/cm at 633 nm. This technique provides lower absorption loss and scattering loss compared with the direct laser-densification technique, which uses UV lasers, and produces narrow waveguides that are difficult to fabricate with a CO2 laser.

© 1996 Optical Society of America

History
Original Manuscript: April 17, 1995
Revised Manuscript: September 12, 1995
Published: March 20, 1996

Citation
Makoto Yoshida and Paras N. Prasad, "Fabrication of channel waveguides from sol-gel-processed polyvinylpyrrolidone/SiO2 composite materials," Appl. Opt. 35, 1500-1506 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-9-1500

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited