OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 9 — Mar. 20, 1996
  • pp: 1512–1518

Iterative method to determine an averaged backscatter-to-extinction ratio in cirrus clouds

Salem Elouragini and Pierre H. Flamant  »View Author Affiliations

Applied Optics, Vol. 35, Issue 9, pp. 1512-1518 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (253 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An iterative method to determine an average backscatter-to-extinction ratio and extinction coefficient simultaneously in cirrus clouds is proposed. The method is based on Klett's inversion, which is constrained by the total optical depth. A signal-to-noise ratio greater than 3 at the cloud top is required for an error in the backscatter-to-extinction ratio lower than 20% to result. The method has been tested with simulated lidar signals. An application to an experimental lidar signal is discussed.

© 1996 Optical Society of America

Original Manuscript: July 14, 1994
Revised Manuscript: August 11, 1995
Published: March 20, 1996

Salem Elouragini and Pierre H. Flamant, "Iterative method to determine an averaged backscatter-to-extinction ratio in cirrus clouds," Appl. Opt. 35, 1512-1518 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
  2. A. Ansmann, J. Bösenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linné, L. Menenger, M. Riebesell, C. Senff, P. Y. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
  3. F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972).
  4. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
  5. C. M. Platt, S. A. Young, A. I. Carswell, S. R. Pal, M. P. McCormick, D. M. Winker, M. DelGuasta, L. Stefanutti, W. L. Eberhard, M. Hardesty, P. H. Flamant, R. Valentin, B. Forgan, G. G. Gimmestad, H. Jäger, S. S. Khmelevtsov, I. Kolev, B. Kaprieolev, Da-ren Lu, K. Sassen, V.S. Shamanaev, O. Uchino, Y. Mizuno, U. Wandinger, C. Weitkamp, A. Ansmann, C. Wooldridge, “The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud-radiation research,” Bull. Am. Meteorol. Soc. 75, 1635–1654 (1994).
  6. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
  7. A. C. Holland, G. Gagne, “The scattering of polarized light by polydisperse systems of irregular particles,” Appl. Opt. 9, 1113–1121 (1970).
  8. P. Huffman, W. R. Thursby, “Light scattering by ice crystals,” J. Atmos. Sci. 26, 1073–1077 (1969).
  9. B. T. N. Evans, “Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar,” Appl. Opt. 27, 3299–3305 (1988).
  10. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
  11. Yu. S. Balin, S. I. Kavkyanov, I. A. Razenkov, “Noise-proof inversion of lidar equation,” Opt. Lett. 12, 13–15 (1987).
  12. J.A. Weinman, “Derivation of atmospheric extinction profiles and wind speed over the ocean from a satellite-borne lidar,” Appl. Opt. 27, 3994–4001 (1988).
  13. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
  14. C. J. Grund, E. W. Eloranta, “The 27–28 October 1986 FIRE IFO cirrus case study: cloud optical properties determined by high spectral resolution lidar,” Mon. Weather Rev. 119, 6–12 (1990).
  15. R. T. H. Collis, “Lidar: a new atmospheric probe,” Q. J. R. Meteorol. Soc. 92, 220–230 (1966).
  16. W. Viezee, E. E. Uthe, R. T. H. Collis, “Lidar observations of airfield approach conditions: an exploratory study,” J. Appl. Meteorol. 8, 274–283 (1969).
  17. C. M. R. Platt, “Remote sounding of high clouds. III. Monte Carlo calculations of multiple-scattering lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
  18. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
  19. J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P. Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI Rep. 60 (Max Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited