OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 1 — Jan. 1, 1997
  • pp: 170–179

Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media

Scott A. Walker, Sergio Fantini, and Enrico Gratton  »View Author Affiliations


Applied Optics, Vol. 36, Issue 1, pp. 170-179 (1997)
http://dx.doi.org/10.1364/AO.36.000170


View Full Text Article

Enhanced HTML    Acrobat PDF (750 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The reconstruction of the location and optical properties of objects in turbid media requires the solution of the inverse problem. Iterative solutions to this problem can require large amounts of computing time and may not converge to a unique solution. Instead, we propose a fast, simple method for approximately solving this problem in which calculated effective absorption and reduced scattering coefficients are backprojected to create an image of the objects. We reconstructed images of objects with centimeter dimensions embedded in a diffusive medium with optical characteristics similar to those of human tissue. Data were collected by a frequency-domain spectrometer operating at 120 MHz with a laser diode light source emitting at 793 nm. Intensity and phase of the incident photon density wave were collected from linear scans at different projection angles. Although the positions of the objects are correctly identified by the reconstructed images, the optical parameters of the objects are recovered only qualitatively.

© 1997 Optical Society of America

History
Original Manuscript: February 8, 1996
Revised Manuscript: July 5, 1996
Published: January 1, 1997

Citation
Scott A. Walker, Sergio Fantini, and Enrico Gratton, "Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media," Appl. Opt. 36, 170-179 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-1-170


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  2. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33, 5204–5213 (1994). [CrossRef] [PubMed]
  3. B. C. Wilson, M. S. Patterson, B. W. Poque, “Instrumentation for in vivo tissue spectroscopy imaging,” in Medical Lasers and Systems II, D. M. Harris, C. M. Penney, A. Katzir, eds., Proc. SPIE1892, 132–147 (1991). [CrossRef]
  4. M. S. Patterson, B. W. Pogue, B. C. Wilson, “Computer simulation and experimental studies of optical imaging with photon density waves,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Mueller, B. Chance, R. Alfano, S. Arridge, J. Bleuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 65–86.
  5. S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991). [CrossRef]
  6. R. L. Barbour, H. L. Graber, R. Aronson, J. Lubowsky, “Imaging of subsurface regions of random media by remote sensing,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, ed., Proc. SPIE1431, 192–203 (1991). [CrossRef]
  7. J. R. Singer, F. A. Grünbaum, P. Kohn, J. Passamani Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990). [CrossRef] [PubMed]
  8. K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995). [CrossRef] [PubMed]
  9. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson “Optical image reconstruction using frequency-domain data: simulations and experiments,” Opt. Image Sci. 13, 253–266 (1996). [CrossRef]
  10. M. A. Oleary, D. A. Boas, B. Chance, A. G. Yodh “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995). [CrossRef]
  11. B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995). [CrossRef] [PubMed]
  12. M. A. Franceschini, S. Fantini, S. A. Walker, J. S. Maier, E. Gratton, “Multi-channel optical instrument for near-infrared imaging of tissues,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 264–273 (1995). [CrossRef]
  13. J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993). [CrossRef] [PubMed]
  14. K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994). [CrossRef]
  15. J.-M. Kaltenbach, M. Kaschke, “Frequency- and time-domain modelling of light transport in random media,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Mueller, B. Chance, R. Alfano, S. Arridge, J. Bleuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 65–86.
  16. S. F. Feng, F. Zeng, B. Chance, “Monte Carlo simulations of photon migration path distributions in multiple scattering media,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. Alfano, eds., Proc. SPIE1888, 78–89 (1993). [CrossRef]
  17. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, New York, 1988), pp. 49–74.
  18. R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Mueller, B. Chance, R. Alfano, S. Arridge, J. Bleuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 87–120.
  19. B. A. Feddersen, D. W. Piston, E. Gratton, “Digital parallel acquisition in frequency domain fluorimetry,” Rev. Sci. Instrum. 60, 2929–2936 (1989). [CrossRef]
  20. S. Fantini, M. A. Franceschini, E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994). [CrossRef]
  21. D. A. Boas, M. A. Oleary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: Analytic Solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994). [CrossRef] [PubMed]
  22. P. Krämmer, H. Bartelt, H. Fischer, B. Schmauss, “Imaging in scattering media using the phase of modulated light sources,” in Photon Propagation in Tissues, B. Chance, D. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 65–74 (1995).
  23. J. S. Maier, E. Gratton, “Frequency-domain methods in optical tomography: detection of localized absorbers and a backscattering reconstruction scheme,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. Alfano, eds., Proc. SPIE1888, 440–451 (1993). [CrossRef]
  24. S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Photon path distributions in turbid media: applications for imaging,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 340–349 (1995).
  25. S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, “Optical image reconstruction with deconvolution in light diffusing media,” in Photon Propagation in Tissues, B. Chance, D. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 306–315 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited