OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 1 — Jan. 1, 1997
  • pp: 180–213

Tomographic image reconstruction from optical projections in light-diffusing media

S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, and N. A. A. J. van Asten  »View Author Affiliations


Applied Optics, Vol. 36, Issue 1, pp. 180-213 (1997)
http://dx.doi.org/10.1364/AO.36.000180


View Full Text Article

Enhanced HTML    Acrobat PDF (5801 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The recent developments in light generation and detection techniques have opened new possibilities for optical medical imaging, tomography, and diagnosis at tissue penetration depths of ∼10 cm. However, because light scattering and diffusion in biological tissue are rather strong, the reconstruction of object images from optical projections needs special attention. We describe a simple reconstruction method for diffuse optical imaging, based on a modified backprojection approach for medical tomography. Specifically, we have modified the standard backprojection method commonly used in x-ray tomographic imaging to include the effects of both the diffusion and the scattering of light and the associated nonlinearities in projection image formation. These modifications are based primarily on the deconvolution of the broadened image by a spatially variant point-spread function that is dependent on the scattering of light in tissue. The spatial dependence of the deconvolution and nonlinearity corrections for the curved propagating ray paths in heterogeneous tissue are handled semiempirically by coordinate transformations. We have applied this method to both theoretical and experimental projections taken by parallel- and fan-beam tomography geometries. The experimental objects were biomedical phantoms with multiple objects, including in vitro animal tissue. The overall results presented demonstrate that image-resolution improvements by nearly an order of magnitude can be obtained. We believe that the tomographic method presented here can provide a basis for rapid, real-time medical monitoring by the use of optical projections. It is expected that such optical tomography techniques can be combined with the optical tissue diagnosis methods based on spectroscopic molecular signatures to result in a versatile optical diagnosis and imaging technology.

© 1997 Optical Society of America

History
Original Manuscript: April 23, 1996
Revised Manuscript: September 9, 1996
Published: January 1, 1997

Citation
S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, and N. A. A. J. van Asten, "Tomographic image reconstruction from optical projections in light-diffusing media," Appl. Opt. 36, 180-213 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-1-180


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Benaron, G. Muller, B. Chance, “Introduction: a medical perspective at the threshold of clinical optical tomography,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 3–9.
  2. K. A. Kang, B. Chance, S. Zhao, S. Srinivasan, E. Patterson, R. Troupin, “Breast tumor characterization using near infrared spectroscopy,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 487–499 (1993). [CrossRef]
  3. R. R. Alfano, G. C. Tang, A. Pradhan, M. Bleich, D. S. J. Choy, E. Opher, “Steady state and time resolved laser fluorescence from normal and tumor lung and breast tissues,” J. Tumor Marker Oncol. 3, 165–172 (1988).
  4. D. A. Benaron, J. P. van Houten, W.-F. Cheong, E. L. Kermit, R. A. King, “Early clinical results of time of flight optical tomography in a neonatal intensive care unit,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, A. Katzir, eds. Proc. SPIE2389, 582–596 (1995). [CrossRef]
  5. F. A. Marks, H. W. Tomlinson, J. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 500–510 (1993). [CrossRef]
  6. M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surg. Gynecol. Obstet. 48, 721–730 (1929).
  7. E. B. De Haller, “Time resolved breast transillumination: analytical, numerical, and experimental study,” Ph.D. dissertation (Ecole Polytechnique Federal de Lausanne, Lausanne, Switzerland, 1993).
  8. Y. Yamashita, M. Kaneko, “Visible and infrared diaphanoscopy for medical diagnostics,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 283–316.
  9. B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993). [CrossRef] [PubMed]
  10. J. Kolzer, G. Mitic, J. Otto, W. Zinth, “Measurement of the optical properties of breast tissue using time-resolved transillumination,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Preizzhev, V. V. Tuchin, A. Katzir, eds., Proc. SPIE2326, 143–152 (1994). [CrossRef]
  11. M. Kashke, H. Jess, G. Gaida, J.-M. Kaltenbach, W. Wrobel, “Transillumination imaging of tissue by phase modulation,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 88–92.
  12. H. Jess, K. T. Moesta, G. Gaida, W. Walch, H. Erdl, P. M. Schlag, M. Kaschke, “Optical mammography at Carl Zeiss,” presented at Biomedical Optics Society Europe ’95, Barcelona, Spain, 12–16 September 1995.
  13. S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, “Optical image reconstruction with deconvolutions in light diffusing media,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, A. Katzir, eds., Proc. SPIE2626, 306–315 (1995).
  14. A. J. Devaney, “Inverse scattering theory foundations of tomography with diffracting wave fields,” in Pattern Recognition and Acoustical Imaging, L. A. Ferrari, ed., Proc. SPIE768, 2–6 (1987). [CrossRef]
  15. H. Schomberg, “Nonlinear image reconstruction from projections of ultrasonic travel times and electric current densities,” in Mathematical Aspects of Computerized Tomography, G. T. Herman, F. Natterer, eds., Vol. 8 of Springer Lecture Notes in Medical Informatics Series (Springer, Berlin, 1981), pp. 270–291.
  16. T. J. Yorkey, J. G. Webster, “A comparison of impedance tomographic reconstruction algorithms,” Clin. Phys. Physiol. Meas. 8, 55–62 (1987). [CrossRef] [PubMed]
  17. B. Brown, D. Barber, L. Tarassenko, eds., Special Issue on Electrical Impedance Tomography—Applied Potential Tomography, Clin. Phys. Physiol. Meas. 8, (1987).
  18. D. C. Barber, A. D. Seager, “Fast reconstruction of resistance images,” Clin. Phys. Physiol. Meas. 8, 47–54 (1987). [CrossRef] [PubMed]
  19. H. Schomberg, “A unifying framework for reconstructive imaging methods,” in Proceedings of the Sixth Aachener Symposium fur Signal Theorie, D. Meyer-Ebrecht, ed., Vol. 153 of Springer Informatik-Fachberichte Series (Springer, Berlin, 1987), pp. 2–15.
  20. S. R. Arridge, “The forward and inverse problems in time resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 35–64.
  21. M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of finite element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993). [CrossRef]
  22. J. Chang, H. L. Graber, R. L. Barbour, “Image reconstruction of targets in random media from continuous wave laser measurements and simulated data,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 193–201.
  23. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995). [CrossRef] [PubMed]
  24. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Images of inhomogeneous turbid media using diffuse photon density waves,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 106–115.
  25. S. Rathee, Z. J. Koles, T. R. Overton, “Image restoration in computed tomography: restoration of experimental CT images,” IEEE Trans. Med. Imag. 11, 546–553 (1992). [CrossRef]
  26. X. Wang, C. J. Ritchie, Y. Kim, “Elevation direction deconvolution in three dimensional ultrasound imaging,” IEEE Trans. Med. Imag. 15, 389–394 (1996). [CrossRef]
  27. S. J. Glick, B. C. Penney, M. A. King, C. L. Byrne, “Noniterative compensation for the distance dependent detector response and photon attenuation in SPECT imaging,” IEEE Trans. Med. Imag. 13, 363–374 (1994). [CrossRef]
  28. A. A. Sawchuk, “Space-variant image restoration by coordinate transformations,” J. Opt. Soc. Am. 64, 138–144 (1974). [CrossRef]
  29. A. S. McLean, J. B. Pendry, “Beyond diffusion to diffraction,” J. Mod. Opt. 42, 2495–2531 (1995). [CrossRef]
  30. G. W. ’t Hooft, D. G. Papaioannou, J. J. M. Baselmans, M. J. C. van Gemert, “Dependence of image quality on optical parameters in time-resolved transillumination experiments,” in Laser Interaction with Hard and Soft Tissue, M. J. C. van Gemert, R. W. Steiner, L. O. Svaasand, H. Albrecht, eds., Proc. SPIE2077, 153–158 (1993). [CrossRef]
  31. C. Chinnock, “Medical diagnostics: laser mammography continues development,” Laser Focus World 32 (2), 38–39 (1996).
  32. B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993). [CrossRef] [PubMed]
  33. D. G. Papaioannou, S. B. Colak, G. W. ’t Hooft, “Resolution and sensitivity limits of optical imaging in highly scattering media,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, A. Katzir, eds., Proc. SPIE2626, 218–227 (1995). [CrossRef]
  34. See, for example, papers in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).
  35. D. Boas, M. O’Leary, A. Yodh, University of Pennsylvania, Photon Migration Imaging (pmi) Software Package; User’s information is available on the Internet. The source code is available by ftp at sol1.lrsm.upenn.edu in /pub/pmi.
  36. S. L. Jacques, M. R. Ostermeyer, L. Wang, A. H. Hielscher, “Effects of sources, boundaries, and heterogeneities on photon migration,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 83–87.
  37. M. R. Ostermeyer, S. L. Jacques, A. H. Hielscher, L. Wang, “Accelerated modeling of light transport in heterogeneous tissue using superposition of virtual sources,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, A. Katzir, eds., Proc. SPIE2326, 56–64 (1995). [CrossRef]
  38. M. R. Ostermeyer, S. L. Jacques, “Perturbation theory for optical diffusion theory: a general approach for absorbing and scattering objects in tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE2389, 98–102 (1995). [CrossRef]
  39. J.-M. Kaltenbach, M. Kaschke, “Frequency- and time-domain modelling of light transport in random media,” in Ref. 34, pp. 65–86.
  40. S. Feng, F. Zeng, B. Chance, “Monte Carlo simulations of photon migration path distributions in multiple scattering media,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 78–89 (1993). [CrossRef]
  41. E. M. Sevick, C. L. Burch, J. K. Frisoli, M. L. Johnson, K. Nowaczyk, H. Szmacinski, J. R. Lakowicz, “The physical basis of biomedical optical imaging using time-dependent measurements of photon migration in the frequency domain,” in Ref. 34, pp. 485–512.
  42. D. H. Burns, “Optical tomography for three-dimensional spectroscopy,” Appl. Spectrosc. 48, 12A–19A (1994). [CrossRef]
  43. L. T. Perelman, J. Wu, I. Itzkan, Y. Wang, R. Dasari, M. S. Feld, “Photon paths in turbid media: theory and experimental observation,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 153–155.
  44. A. Hielscher, F. K. Tittel, “Photon density wave diffraction tomography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 78–82.
  45. F. Natterer, The Mathematics of Computerized Tomography (Wiley, New York, 1986), Chap. V, pp. 128–137.
  46. D. C. Youla, “Mathematical theory of image restoration by the method of convex projections,” in Image Recovery: Theory and Application, H. Stark, ed. (Academic, New York, 1987), Chap. 2.
  47. See R. R. Alfano, ed., Advances in Optical Imaging and Photon Migration, Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994).
  48. See papers in Tissue Optics—Applications in Medical Diagnostics and Therapy, V. V. Tuchin, ed., Vol. MS102 of SPIE Milestone Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994).
  49. S. W. Rowland, “Computer implementation of image reconstruction formulas,” in Image Reconstruction from Projections, G. T. Herman, ed. (Springer-Verlag, Berlin, 1979), pp. 9–79. [CrossRef]
  50. S. A. Walker, A. E. Cerussi, E. Gratton, “Back-projection image reconstruction using photon density waves in tissues,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE2389, 350–357 (1995). [CrossRef]
  51. M. B. van der Mark, G. W. ’t Hooft, D. G. Papaioannou, S. B. Colak, N. A. A. J. van Asten, J. C. J. Paasschens, “Boundary effects in optical tomography,” presented at Biomedical Optics Society Europe ’96, Vienna, 7–11 September 1996.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited