OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 1 — Jan. 1, 1997
  • pp: 21–31

Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head

Eiji Okada, Michael Firbank, Martin Schweiger, Simon R. Arridge, Mark Cope, and David T. Delpy  »View Author Affiliations


Applied Optics, Vol. 36, Issue 1, pp. 21-31 (1997)
http://dx.doi.org/10.1364/AO.36.000021


View Full Text Article

Enhanced HTML    Acrobat PDF (1592 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Near-infrared light propagation in various models of the adult head is analyzed by both time-of-flight measurements and mathematical prediction. The models consist of three- or four-layered slabs, the latter incorporating a clear cerebrospinal fluid (CSF) layer. The most sophisticated model also incorporates slots that imitate sulci on the brain surface. For each model, the experimentally measured mean optical path length as a function of source–detector spacing agrees well with predictions from either a Monte Carlo model or a finite-element method based on diffusion theory or a hybrid radiosity–diffusion theory. Light propagation in the adult head is shown to be highly affected by the presence of the clear CSF layer, and both the optical path length and the spatial sensitivity profile of the models with a CSF layer are quite different from those without the CSF layer. However, the geometry of the sulci and the boundary between the gray and the white matter have little effect on the detected light distribution.

© 1997 Optical Society of America

History
Original Manuscript: March 8, 1996
Revised Manuscript: June 12, 1996
Published: January 1, 1997

Citation
Eiji Okada, Michael Firbank, Martin Schweiger, Simon R. Arridge, Mark Cope, and David T. Delpy, "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Appl. Opt. 36, 21-31 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-1-21


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. F. Jöbsis, “Non invasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977). [CrossRef] [PubMed]
  2. C. J. Aldrich, J. S. Wyatt, J. A. Spencer, E. O. R. Reynolds, D. T. Delpy, “The effect of maternal oxygen administration of human fetal cerebral oxygenation measured during labour by near infrared spectroscopy,” Br. J. Obstet. Gynaecol. 101, 509–513 (1994). [CrossRef] [PubMed]
  3. J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet 8515, 1063–1066 (1986). [CrossRef]
  4. M. Ferrari, E. Zanette, I. Giannini, G. Sideri, C. Fieschi, A. Carpi, “Effect of carotid artery compression test on regional cerebral blood volume, haemoglobin oxygen saturation and cytochrome-c-oxidase redox level in cerebrovascular patients,” Adv. Exp. Med. Biol. 200, 213–222 (1986). [CrossRef]
  5. N. B. Hampson, E. M. Camporesi, B. W. Stolp, R. E. Moon, J. E. Shook, J. A. Griebel, C. A. Piantadosi, “Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans,” J. Appl. Physiol. 69, 907–913 (1990). [PubMed]
  6. Y. Hoshi, M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett. 150, 5–8 (1993). [CrossRef] [PubMed]
  7. Y. A. B. D. Wickramasinghe, J. A. Crowe, P. Rolfe, “Laser source and detector with single processor for a near infra-red medical application,” in IERE Progress Reports on Electronics in Medicine and Biology, K. Copeland, ed. (Institution of Electronic and Radio Engineers, London, 1986), pp. 209–215.
  8. M. Cope, D. T. Delpy, “System for long term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination,” Med. Biol. Eng. Comput. 26, 289–294 (1988). [CrossRef] [PubMed]
  9. B. Chance, M. Maris, J. Sorge, M. Z. Zhang, “A phase modulation system for dual wavelength difference spectroscopy of haemoglobin deoxygenation in tissue,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. SPIE1204, 481–491 (1990). [CrossRef]
  10. M. Miwa, Y. Ueda, B. Chance, “Development of time resolved spectroscopy system for quantitative noninvasive tissue measurement,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149 (1995).
  11. D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. S. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988). [CrossRef] [PubMed]
  12. P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992). [CrossRef] [PubMed]
  13. J. S. Wyatt, M. Cope, D. T. Delpy, P. van der Zee, S. R. Arridge, A. D. Edwards, E. O. R. Reynolds, “Measurement of optical pathlength for cerebral near infrared spectroscopy in newborn infants,” Dev. Neurosci. 12, 140–144 (1990). [CrossRef]
  14. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995). [CrossRef] [PubMed]
  15. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, D. T. Delpy, “Measurement of cranial optical pathlength as a function of age using phase resolved optical spectroscopy,” Pediatr. Res. 39, 1–7 (1996). [CrossRef]
  16. R. Nossal, J. Kiefer, G. H. Weiss, R. Bonner, H. Taitelbaum, S. Havlin, “Photon migration in layered media,” Appl. Opt. 27, 3382–3391 (1988). [CrossRef] [PubMed]
  17. H. Taitelbaum, S. Havlin, G. H. Weiss, “Approximate theory of photon migration in a two-layer medium,” Appl. Opt. 28, 2245–2249 (1989). [CrossRef] [PubMed]
  18. W. Cui, L. E. Ostrander, “The relationship of surface reflectance measurements to optical properties of layered biological media,” IEEE Trans. Biomed. Eng. 39, 194–201 (1992). [CrossRef] [PubMed]
  19. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993). [CrossRef] [PubMed]
  20. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, J. C. Hebden, M. Hiraoka, D. T. Delpy, “Experimental measurements on phantoms and Monte Carlo simulation to evaluate the effect of inhomogeneity on optical pathlength,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 174–181 (1995).
  21. M. Firbank, M. Schweiger, D. T. Delpy, “Investigation of ‘light piping’ through clear regions of scatter objects,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 167–173 (1995). [CrossRef]
  22. E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995). [CrossRef] [PubMed]
  23. A. H. Hielscher, H. Liu, B. Chance, F. K. Tittel, S. L. Jacques, “Phase resolved reflectance spectroscopy on layered turbid media,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 248–256 (1995). [CrossRef]
  24. M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering region,” Phys. Med. Biol. 41, 767–783 (1996). [CrossRef] [PubMed]
  25. J. C. Schotland, J. C. Haselgrove, J. S. Leigh, “Photon hitting density,” Appl. Opt. 32, 448–453 (1993). [CrossRef] [PubMed]
  26. S. R. Arridge, “Photon-measurement density functions. Part I: analytical forms,” Appl. Opt. 34, 7395–7409 (1995). [CrossRef] [PubMed]
  27. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  28. P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 454–465 (1993). [CrossRef]
  29. M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993). [CrossRef] [PubMed]
  30. M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993). [CrossRef]
  31. B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983). [CrossRef] [PubMed]
  32. P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987). [CrossRef]
  33. M. S. Patterson, B. C. Wilson, D. Wyman, “The propagation of optical radiation in tissue. I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990). [CrossRef]
  34. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1978), 140–144.
  35. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.
  36. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993). [CrossRef] [PubMed]
  37. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef] [PubMed]
  38. S. P. Gopinath, C. S. Robertson, R. G. Grossman, B. Chance, “Near infrared spectroscopic localisation of intracranial hematomas,” J. Neurosurg. 79, 43–47 (1993). [CrossRef] [PubMed]
  39. K. L. Leenders, D. Perani, A. A. Lammerstsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, T. Jones, “Cerebral blood flow, blood volume and oxygen utilization,” Brain 113, 27–47 (1990). [CrossRef]
  40. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 401–404 (1993). [CrossRef]
  41. G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology 32, 505–509 (1995). [CrossRef] [PubMed]
  42. J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, S. Zeki, “Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy,” Proc. R. Soc. London Ser. B 261, 351–356 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited