OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 1 — Jan. 1, 1997
  • pp: 32–43

Interaction of holmium laser radiation and cortical bone: ablation and thermal damage in a turbid medium

T. G. Barton, H.-J. Foth, M. Christ, and K. Hörmann  »View Author Affiliations

Applied Optics, Vol. 36, Issue 1, pp. 32-43 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (528 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ablation of cortical bone by holmium laser radiation is described by experimental values of the ablation rate, the depth of tissue damage, and the tissue temperature. An ablation model is presented on the basis of photon diffusion in a turbid medium. When this model is compared with experimental results for the ablation rate, the penetration depth is determined. The expansion of the laser-induced heat can be explained by a point heat source located in a distance beneath the surface equal to the ablation depth. The accumulation of heat as a function of the repetition rate of the laser leads to a limitation of the repetition rate. In order to avoid traumatic heat accumulation, a maximum repetition rate should not be exceeded.

© 1997 Optical Society of America

Original Manuscript: March 4, 1996
Revised Manuscript: July 5, 1996
Published: January 1, 1997

T. G. Barton, H.-J. Foth, M. Christ, and K. Hörmann, "Interaction of holmium laser radiation and cortical bone: ablation and thermal damage in a turbid medium," Appl. Opt. 36, 32-43 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. C. Nuss, R. L. Fabian, R. Sarkar, C. A. Puliafito, “Infrared laser bone ablation,” Laser Surg. Med. 8, 381–391 (1988). [CrossRef]
  2. J. T. Walsh, T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Laser Surg. Med. 9, 327–337 (1989). [CrossRef]
  3. J. S. Nelson, A. Orenstein, L.-H. L. Liaw, M. W. Berns, “Mid-infrared erbium:YAG laser ablation of bone: the effect of laser osteotomy on bone healing,” Laser Surg. Med. 9, 362–374 (1989). [CrossRef]
  4. J. A. Izatt, D. Albagli, M. Britton, J. M. Jubas, I. Itzkan, M. S. Feld, “Wavelength dependence of pulsed laser ablation of calcified tissue,” Laser Surg. Med. 11, 238–249 (1991). [CrossRef]
  5. R. Hibst, “Mechanical effects of erbium:YAG laser bone ablation,” Laser Surg. Med. 12, 125–129 (1992). [CrossRef]
  6. V. Romano, R. Rodriguez, H. J. Altermatt, M. Frenz, H. P. Weber, “Bone microsurgery with IR-lasers: a comparative study of the thermal action at different wavelengths,” in Laser Tissue Interaction with Hard and Soft Tissue, H. J. Albrecht, A. Katzir, R. W. Steiner, L. O. Svaasand, M. J. C. van Gemert, eds., Proc. SPIE2077, 87–97 (1994). [CrossRef]
  7. H.-J. Foth, T. G. Barton, K. Hörmann, M. Christ, N. Stasche, “Possibilities and problems of using the holmium laser in ENT,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, A. Katzir, eds., Proc. SPIE2128, 17–22 (1994).
  8. E. Stein, T. Sedlacek, R. L. Fabian, N. S. Nishioka, “Acute and chronic effects of bone ablation with a pulsed holmium laser,” Laser Surg. Med. 10, 384–388 (1990). [CrossRef]
  9. M. H. Niemz, L. Eisenmann, T. Pioch, “Vergleich von drei Lasersystemen zur Abtragung von Zahnschmelz,” Schweiz. Monatsschr. Zahnmed. 103, 1252–1256 (1993).
  10. N. S. Nishioka, Y. Domankevitz, “Comparison of tissue ablation with pulsed holmium and thulium lasers,” IEEE J. Quantum Electron. 26, 2271–2275 (1990). [CrossRef]
  11. N. Hodgson, D. J. Golding, “High power 1.444 µm Nd:YAG laser and its applications,” Laser Optoelektron. 25, 38–47 (1993).
  12. J.-L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Laser Med. Sci. 1, 47–66 (1986). [CrossRef]
  13. J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Laser Surg. Med. 15, 295–305 (1994). [CrossRef]
  14. A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28, 2210–2215 (1989). [CrossRef] [PubMed]
  15. M. J. C. van Gemert, S. L. Jacques, H. J. C. Sterenbourg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989). [CrossRef] [PubMed]
  16. W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  17. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990). [CrossRef]
  18. S. L. Jacques, “Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation,” Appl. Opt. 32, 2447–2454 (1993). [CrossRef] [PubMed]
  19. T. G. Barton, H.-J. Foth, “Tissue ablation at scattering dominated conditions,” in Photon Propagation in Tissues II, B. Chance, D. A. Benaron, G. J. Mueller, eds., Proc. SPIE2925 (1996). [CrossRef]
  20. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, Oxford, 1959), Chap. 10, pp. 255–259.
  21. A. L. McKenzie, “Physics of thermal processes in laser–tissue interaction,” Phys. Med. Biol. 35, 1175–1209 (1990). [CrossRef] [PubMed]
  22. N. P. Furzikov, “Different lasers for angioplasty: thermooptical comparison,” IEEE J. Quantum Electron. 23, 1751–1755 (1987). [CrossRef]
  23. M. J. C. van Gemert, A. J. Welch, “Time constants in thermal laser medicine,” Laser Surg. Med. 9, 405–421 (1989). [CrossRef]
  24. R. Birngruber, “Thermal modeling in biological tissues,” in Lasers in Biology and Medicine, F. Hillenkamp, R. Pratesi, C. A. Sacchi, eds. (Plenum, New York, 1980), pp. 77–97. [CrossRef]
  25. F. C. Henriques, “Studies of thermal injury,” Arch. Pathol. 43, 489–502 (1947).
  26. T. G. Barton, R. Guttenberger, H.-J. Foth, “Effects of simmer current on flash-lamp impedance and their combined influence on the output of the Ho, Cr, Tm:YAG laser,” Appl. Opt. 34, 2004–2011 (1995). [CrossRef] [PubMed]
  27. T. G. Barton, M. Christ, H.-J. Foth, K. Hörmann, N. Stasche: “Ablation of hard tissue with the holmium laser investigated by a surface profile measurement system and a confocal laser scanning microscope,” in Laser Tissue Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacrétaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. C. van Gemert, eds., Proc. SPIE2323, 185–195 (1995). [CrossRef]
  28. A. J. Welch, A. B. Bradley, M. D. Jorge, J. H. Torres, M. Motamedi, J. G. Ghidoni, J. A. Pearce, H. Hussein, R. A. O’Rourke, “Laser probe ablation of normal and atherosclerotic human aorta in vitro: a first thermographic and histologic analysis,” Circulation 76, 1353–1363 (1987). [CrossRef] [PubMed]
  29. T. G. Barton, H.-J. Foth, K. Bickelmann, D. Meyer, K. Hörmann, M. Christ, “Charakterisierung der Abtragung von Knochen durch den Holmium-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, Waidelich, eds. (Springer-Verlag, Berlin, 1996), pp. 209–211.
  30. E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption of water for midinfrared radiation,” Laser Surg. Med. 14, 258–268 (1994). [CrossRef]
  31. F. A. Duck, Physical Properties of Tissue (Academic, London, 1990), Chap. 9, p. 322.
  32. N. S. Nishioka, Y. Domankevitz, “Reflectance during pulsed holmium laser irradiation of tissue,” Laser Surg. Med. 9, 375–381 (1989). [CrossRef]
  33. M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, M. Istomyn, V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56, 104–112 (1993). [CrossRef]
  34. A. Charlton, M. R. Dickinson, T. A. King, A. J. Freemont, “Erbium-YAG and holmium-YAG ablation of bone,” Laser Life Sci. 5, 365–373 (1990). [CrossRef]
  35. M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, U. Losert, “Erb:YAG and Hol:YAG laser osteotomy: the effect of laser ablation on bone healing,” Laser Surg. Med. 15, 373–381 (1994). [CrossRef]
  36. I. I. H. Chen, S. Saha, “Thermal analysis of the bone surface induced by laser radiation,” Ann. Biomed. Eng. 15, 457–466 (1987). [CrossRef] [PubMed]
  37. H. F. Bowman, E. G. Cravalho, M. Woods, “Theory, measurement, and application of thermal properties of biomaterials,” Ann. Rev. Biophys. Bioeng. 4, 43–79 (1975). [CrossRef]
  38. Ref. 31, Chap. 2, p. 28.
  39. N. Quinaux, L. J. Richelle, “X-ray defraction and infrared analysis of bone specific gravity functions in the growing rat,” Isr. J. Med. Sci. 3, 677–690 (1967).
  40. K. Kopitzki, Einführung in die Festkörperphysik (Teubner, Stuttgart, 1986), Chap. 2, pp. 80–84.
  41. M. J. Morley, “Thermal conductivities of muscles, fats, and bones,” J. Food Technol. 1, 303–311 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited