OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 10 — Apr. 1, 1997
  • pp: 2034–2041

Beam shaping in the nonparaxial domain of diffractive optics

Markku Kuittinen, Pasi Vahimaa, Marko Honkanen, and Jari Turunen  »View Author Affiliations


Applied Optics, Vol. 36, Issue 10, pp. 2034-2041 (1997)
http://dx.doi.org/10.1364/AO.36.002034


View Full Text Article

Enhanced HTML    Acrobat PDF (272 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address the problem of shaping the radiant intensity distribution of a highly nonparaxial coherent field by means of a diffractive element located in the plane of the beam waist. To be capable of wide-angle energy redistribution the element must necessarily contain wavelength-scale transverse features, and consequently it must be designed on the basis of rigorous diffraction theory. We consider, in particular, wide-angle Gaussian to flat-top beam shaping in one dimension. Scalar designs are provided and their validity is evaluated by rigorous diffraction theory, which is also used for optimization deep inside the nonparaxial domain, where the scalar designs fail. Experimental verification is provided by means of electron-beam lithography.

© 1997 Optical Society of America

History
Original Manuscript: March 18, 1996
Revised Manuscript: July 15, 1996
Published: April 1, 1997

Citation
Markku Kuittinen, Pasi Vahimaa, Marko Honkanen, and Jari Turunen, "Beam shaping in the nonparaxial domain of diffractive optics," Appl. Opt. 36, 2034-2041 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-10-2034


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. W. Rhodes, D. L. Shealy, “Refractive optical systems for irradiance distribution of collimated radiation: their design and analysis,” Appl. Opt. 19, 3545–3553 (1980). [CrossRef] [PubMed]
  2. D. Shafer, “Gaussian to flat-top intensity distributing lens,” Opt. Laser Technol. 14, 159–160 (1982). [CrossRef]
  3. N. C. Roberts, “Beam shaping by holographic filters,” Appl. Opt. 28, 31–32 (1989). [CrossRef] [PubMed]
  4. F. S. Roux, “Intensity distribution transformation for rotationally symmetric beam shaping,” Opt. Eng. 31, 529–536 (1991). [CrossRef]
  5. C. C. Aleksoff, K. K. Ellis, B. D. Neagle, “Holographic conversion of a Gaussian beam into a near-field uniform beam,” Opt. Eng. 30, 537–543 (1991). [CrossRef]
  6. W.-H. Lee, “Method for converting a Gaussian laser beam into a uniform beam,” Opt. Commun. 36, 469–471 (1981). [CrossRef]
  7. W. B. Veldkamp, C. J. Kastner, “Beam profile shaping for laser radars that use detector arrays,” Appl. Opt. 21, 345–356 (1982). [CrossRef] [PubMed]
  8. C.-Y. Han, Y. Ishii, K. Murata, “Reshaping collimated laser beams with Gaussian profile to uniform profiles,” Appl. Opt. 22, 3644–3647 (1983). [CrossRef] [PubMed]
  9. M. T. Eismann, A. M. Tai, J. N. Cederquist, “Iterative design of a holographic beamformer,” Appl. Opt. 28, 2641–2650 (1989). [CrossRef] [PubMed]
  10. Y. Ohtsuka, A. Tanone, “Acousto-optic modification of a Gaussian laser beam,” Opt. Commun. 39, 70–74 (1981). [CrossRef]
  11. E. Tervonen, A. T. Friberg, J. Turunen, “Acousto-optic conversion of laser beams into flat-top beams,” J. Mod. Opt. 40, 625–635 (1993). [CrossRef]
  12. H. Aagedal, S. Teiwes, F. Wyrowski, “Consequense of illumination wave on optical function of non-periodic diffractive elements,” Opt. Commun. 109, 22–28 (1994). [CrossRef]
  13. E. Noponen, A. Vasara, J. Turunen, J. M. Miller, M. R. Taghizadeh, “Rigorous diffraction theory of Dammann gratings,” Opt. Commun. 81, 337–342 (1991). [CrossRef]
  14. J. Turunen, A. Vasara, H. Ichikawa, E. Noponen, J. Westerholm, M. R. Taghizadeh, J. M. Miller, “Storage of multiple images in a thin synthetic Fourier hologram,” Opt. Commun. 84, 383–392 (1991). [CrossRef]
  15. J. M. Miller, M. R. Taghizadeh, J. Turunen, N. Ross, E. Noponen, A. Vasara, “Kinoform array illuminators in fused silica,” J. Mod. Opt. 40, 723–732 (1993). [CrossRef]
  16. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), Chap. 5. [CrossRef]
  17. J. Huttunen, A. T. Friberg, J. Turunen, “Diffraction of partially coherent electromagnetic fields by microstructured media,” Phys. Rev. E 52, 3081–3092 (1995). [CrossRef]
  18. K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” J. Opt. Soc. Am. 68, 1206–1210 (1978). [CrossRef]
  19. J. Turunen, “Diffraction theory of microrelief gratings,” in Microoptics, H. P. Herzig, ed. (Taylor & Francis, London, 1996).
  20. M. Neviere, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer, Berlin, 1980), Sect. 5.5.
  21. M. Kuittinen, J. Turunen, “Exact-eigenmode model for index-modulated apertures,” J. Opt. Soc. Am. A 13, 2014–2020 (1996). [CrossRef]
  22. E. Noponen, A. Vasara, J. Turunen, J. M. Miller, M. R. Taghizadeh, “Synthetic diffractive optics in the resonance domain,” J. Opt. Soc. Am. A 9, 1206–1213 (1992). [CrossRef]
  23. R. Bräuer, O. Bryngdahl, “Design strategy of diffractive elements with prescribed diffraction angles in non-paraxial region,” Opt. Commun. 115, 411–416 (1995). [CrossRef]
  24. R. C. McPhedran, G. H. Derrick, L. C. Botten, “Theory of crossed gratings,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer, Berlin, 1980), Sect. 7.
  25. R. Bräuer, O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100, 1–5 (1993). [CrossRef]
  26. E. Noponen, J. Turunen, “Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles,” J. Opt. Soc. Am. A 11, 2494–2502 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited