OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 10 — Apr. 1, 1997
  • pp: 2048–2057

Graded-index diffractive structures fabricated by thermal ion exchange

Risto-Pekka Salmio, Jyrki Saarinen, Jari Turunen, and Ari Tervonen  »View Author Affiliations


Applied Optics, Vol. 36, Issue 10, pp. 2048-2057 (1997)
http://dx.doi.org/10.1364/AO.36.002048


View Full Text Article

Acrobat PDF (539 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-efficiency diffractive elements with a continuous phase-modulation capability can be realized either by means of a surface profile or a refractive-index distribution. We consider the latter approach, expanding on our recent proposal [Appl. Phys. Lett. 66, 917 (1995)] to fabricate graded-index diffractive structures by thermal ion exchange in glass. A rapid approximate method is developed to obtain a predesign of the ion-exchange mask, which is then refined by parametric optimization based on solutions of the full diffusion problem. The use of two consecutive ion-exchange steps and postbaking to enhance the designs is investigated, and some experimental results are provided.

© 1997 Optical Society of America

Citation
Risto-Pekka Salmio, Jyrki Saarinen, Jari Turunen, and Ari Tervonen, "Graded-index diffractive structures fabricated by thermal ion exchange," Appl. Opt. 36, 2048-2057 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-10-2048


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. Wyrowski and O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Progr. Phys. 54, 1481–1571 (1991).
  2. J. Turunen and F. Wyrowski, “Diffractive optics: from promise to fruition,” in Trends in Optics, A. Consortini, ed. (Academic, New York, 1996), pp. 111–123.
  3. T. Suhara and H. Nishihara, “Micro Fresnel lenses,” in Progress in Optics XXIV, E. Wolf, ed. (North-Holland, Amsterdam, 1987), pp. 1–37.
  4. N. Streibl, “Beam shaping with optical array generators,” J. Mod. Opt. 36, 1559–1573 (1989).
  5. R. L. van Renesse, ed., Optical Document Security (Artech, Boston, 1994).
  6. P. St. Hilaire, S. A. Benton, and M. Lucente, “Synthetic aperture holography: a novel approach to three-dimensional displays,” J. Opt. Soc. Am. A 9, 1969–1977 (1992).
  7. J. Jahns and S. H. Lee, eds., Optical Computing Hardware (Academic, Boston, 1994).
  8. M. R. Taghizadeh and J. Turunen, “Synthetic diffractive elements for optical interconnection,” Opt. Comp. Proc. 2, 221–242 (1992).
  9. J. Jahns, “Planar packaging of free-space optical interconnections,” Proc. IEEE 82, 1623–1631 (1994).
  10. F. Wyrowski and R. Zuidema, “Diffractive interconnection between a high-power Nd:YAG-laser and a fiber bundle,” Appl. Opt. 33, 6732–6740 (1994).
  11. M. Ekberg, M. Larsson, A. Bolle, and S. Hård, “Nd:YAG laser machining with multilevel resist kinoforms,” Appl. Opt. 30, 3604–3606 (1991).
  12. J. J. Clair and C. I. Abitbol, “Recent advances in phase profiles generation,” in Progress in Optics XVI, E. Wolf, ed. (North-Holland, Amsterdam, 1978), pp. 71–117.
  13. M. T. Gale, G. K. Lang, J. M. Raynor, H. Schütz, and D. Prongué, “Fabrication of kinoform structures for optical computing,” Appl. Opt. 31, 5712–5715 (1992).
  14. M. Ekberg, F. Nikolajeff, M. Larsson, and S. Hård, “Proximity-compensated blazed transmission grating manufacture with direct-writing, electron-beam lithography,” Appl. Opt. 33, 103–107 (1994).
  15. R. Waldhäusl, P. Dannberg, E.-B. Kley, A. Bräuer, and W. Karthe, “Highly efficient blazed grating couplers in planar polymer waveguides,” Int. J. Optoelectron. 8, 529–536 (1993).
  16. H. Andersson, M. Ekberg, S. Hård, S. Jacobsson, M. Larsson, and T. Nilsson, “Single photomask, multilevel kinoforms in quartz and photoresist: manufacture and evaluation,” Appl. Opt. 29, 4259–4267 (1990).
  17. W. Däschner, P. Long, M. Larsson, and S. H. g1056 Lee, “Fabrication of diffractive optical elements using a single optical exposure with a gray level mask,” J. Vac. Sci. Technol. B 13, 2729–2731 (1995).
  18. H. P. Herzig, M. T. Gale, H. W. Lehmann, and R. Morf, “Diffractive components: computer-generated elements,” in Perspectives for Parallel Optical Interconnects, Ph. Lalanne and P. Chavel, eds. (Springer, Berlin, 1993), pp. 71–107.
  19. E. Pawlowski, H. Engel, and M. Ferstl, “Diffractive microlenses with antireflection coatings fabricated by thin film deposition,” Opt. Eng. 33, 647–652 (1994).
  20. K. Iga, “Microoptics,” in International Trends in Optics, J. W. Goodman, ed. (Academic, Boston, 1991), pp. 37–55.
  21. H. M. Smith, ed. Holographic Recording Materials (Springer-Verlag, Berlin, 1977).
  22. B. Messerschmidt, T. Possner, and R. Göring, “Colorless gradient-index cylindrical lenses with high numerical apertures produced by silver-ion exchange,” Appl. Opt. 34, 7825–7830 (1995).
  23. J. Bähr, K.-H. Brenner, S. Sinzinger, T. Spick, and M. Testorf, “Index-distributed planar microlenses for three-dimensional micro-optics fabricated by silver-sodium ion exchange in BGG35 substrates,” Appl. Opt. 33, 5919–5924 (1994).
  24. A. Tervonen, “Theoretical analysis of ion-exchanged glass waveguides,” in Introduction to Glass Integrated Optics, S.I. Najafi, ed. (Artech, Boston, 1992), pp. 73–105.
  25. T. Yatagai, R. Sugawara, H. Hashizume, and M. Seki, “Phase-only computer-generated hologram produced by an ion-exchange technique,” Opt. Lett. 13, 952–954 (1988).
  26. H. C. Bolstad, T. Yatagai, and M. Seki, “Optimization of phase-only computer-generated holograms using an ion-exchange process,” Opt. Eng. 31, 1259–1263 (1992).
  27. E. J. Patej and B. Oroń, “Realisation and investigation of phase diffraction gratings in glass,” in Optical Fibres and Their Applications V, R. S. Romaniuk and M. Szustakowski, eds., Proc. SPIE 1085, 436–437 (1989).
  28. J. Saarinen, A. Tervonen, J. Turunen, and S. Honkanen, “Electric-field assisted silver-film ion-exchange in glass for the fabrication of index-modulated diffractive elements,” in Meeting Digest—Frontiers in Information Optics, Topical Meeting of ICO (International Commission for Optics, Kyoto, Japan, 1994), p. 76.
  29. R.-P. Salmio, J. Saarinen, J. Turunen, and A. Tervonen, “Graded-index diffractive elements by thermal ion exchange in glass,” Appl. Phys. Lett. 66, 917–919 (1995).
  30. H. Dammann and K. Görtler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
  31. J. Turunen, A. Vasara, and J. Westerholm, “Kinoform phase relief synthesis: a stochastic method,” Opt. Eng. 28, 1162–1167 (1989).
  32. P. Ehbets, H. P. Herzig, D. Prongué, and M. T. Gale, “High-efficiency continuous surface-relief gratings for two-dimensional array generation,” Opt. Lett. 17, 908–910 (1992).
  33. A. Vasara, M. R. Taghizadeh, J. Turunen, J. Westerholm, E. Noponen, H. Ichikawa, J. M. Miller, T. Jaakkola, and S. Kuisma, “Binary surface-relief gratings for array illumination in digital optics,” Appl. Opt. 31, 3320–3336 (1992).
  34. S. Honkanen and A. Tervonen, “Experimental analysis of Ag+-Na+ exchange in glass with Ag film ion sources for planar optical waveguide fabrication,” J. Appl. Phys. 63, 634–639 (1988).
  35. The empirical values for a and b were misprinted in Ref. 34. This is the correct form.
  36. J. Saarinen, J. Turunen, and J. Huttunen, “Volume diffraction effects in computer-generated guided-wave holography,” Appl. Opt. 33, 1035–1043 (1994).
  37. J. H. Ferziger, Numerical Methods for Engineering Application (Wiley, New York, 1981).
  38. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987).
  39. N. Yoshikawa, M. Itoh, and T. Yatagai, “Quantized phase optimization of two-dimensional Fourier kinoforms by a genetic algorithm,” Opt. Lett. 20, 752–754 (1995).
  40. R. G. Walker, C. D. W. Wilkinson, and J. A. H. Wilkinson, “Integrated optical waveguiding structures made by silver ion-exchange in glass. 1: The propagation characteristics of stripe ion-exchanged waveguides; a theoretical and experimental investigation,” Appl. Opt. 22, 1923–1928 (1983).
  41. J. Albert and G. L. Yip, “Insertion loss reduction between single-mode fibers and diffused channel waveguides,” Appl. Opt. 27, 4837–4843 (1988).
  42. J. Saarinen, S. Honkanen, S. I. Najafi, and J. Huttunen, “Double ion-exchanged process in glass for the fabrication of computer-generated waveguide holograms,” Appl. Opt. 33, 3353–3359 (1994).
  43. A. Brandenburg, “Stress in ion-exchanged glass waveguides,” J. Lightwave Technol. LT-4, 1580–1593 (1986).
  44. S. D. Fantone, “Refractive index and spectral models for gradient-index materials,” Appl. Opt. 22, 432–440 (1983).
  45. J. M. Inman, J. L. Bentley, and S. N. Houde-Walter, “Modeling ion-exchanged glass photonics: the modified quasi-chemical diffusion coefficient,” J. Non-Cryst. Solids 191, 209–215 (1995).
  46. M. N. Weiss and R. Srivastava, “Determination of ion-exchanged channel waveguide profile parameters by mode-index measurements,” Appl. Opt. 34, 455–458 (1995).
  47. T. Possner and R. Göring, “Transmission phase gratings by ion exchange in optical glasses,” presented at the 10th Topical Meeting of GRIN’92, Santiago de Compostela, Spain, 4–6 October 1992, paper T.2.9.
  48. T. Possner, E. Döpel, and R. Göring, “Cylindrical microlenses and transmission phase gratings by silver ion exchange in optical glasses for microoptic applications,” presented at the the Fourth Micro-optics Conference and the 11th Topical Meeting on Gradient-Index Optical Systems, Kawasaki, Japan, 20–22 October 1993, paper K2.
  49. J. L. Coutaz and P. C. Jaussaud, “High index gradient in glass by ion exchange,” Appl. Opt. 21, 1063–1065 (1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited