OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 12 — Apr. 20, 1997
  • pp: 2499–2505

Two-dimensional simulation of a high-gain, generalized self-filtering, unstable resonator

A. Torre and C. Petrucci  »View Author Affiliations


Applied Optics, Vol. 36, Issue 12, pp. 2499-2505 (1997)
http://dx.doi.org/10.1364/AO.36.002499


View Full Text Article

Acrobat PDF (278 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of a high-power excimer laser, generalized self-filtering, unstable resonator has been modeled by means of a numerical code. The spectral method and the Rigrod equations are basic to the numerical procedure, which is quite general because it results from an appropriate combination of independent propagation algorithms. The code can be applied to arbitrary resonator geometry and can be used to take account of gain medium inhomogeneities and instability phenomena.

© 1997 Optical Society of America

Citation
A. Torre and C. Petrucci, "Two-dimensional simulation of a high-gain, generalized self-filtering, unstable resonator," Appl. Opt. 36, 2499-2505 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-12-2499


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. C. Gobbi, S. Morosi, G. C. Reali, and A. S. Zarkasi, “Novel unstable resonator configuration with a self-filtering aperture: experimental characterization of the Nd:YAG loaded cavity,” Appl. Opt. 24, 26–33 (1985).
  2. R. Barbini, A. Ghigo, M. Giorgi, K. N. Iyer, A. Palucci, and S. Ribezzo, “Injection locked single mode high power low divergence TEA CO laser using SFUR configuration,” Opt. Commun. 60, 239–243 (1986).
  3. V. Boffa, P. Di Lazzaro, G. P. Gallerano, G. Giordano, T. Hermsen, T. Letardi, and C. E. Zheng, “Self-filtering unstable resonator operation of XeCl laser,” IEEE J. Quantum Electron. QE-23, 1241–1244 (1987).
  4. A. Luches, V. Nassisi, and M. R. Perrone, “Experimental characterization of a self-filtering unstable resonator applied to a short-pulse XeCl laser,” Appl. Opt. 28, 2047–2051 (1989).
  5. P. G. Gobbi and G. C. Reali, “A novel unstable resonator configuration with a self filtering aperture,” Opt. Commun. 52, 195–198 (1984).
  6. P. G. Gobbi and G. C. Reali, “Numerical study of a self-filtering unstable resonator,” in Refereed Proceedings of the Southwestern Conference on Optics, S. C. Stotlar and R. S. McDowell, eds., Proc. SPIE 540, 119–123 (1985).
  7. P. Di Lazzaro, T. Hermsen, T. Letardi, and C. E. Zheng, “Self-filtering unstable resonator: an approximate analytical model with comparison to computed and XeCl laser experimental results,” Opt. Commun. 61, 393–396 (1987).
  8. H. Fang and M. R. Perrone, “Numerical modeling of short-pulse excimer lasers with negative branch unstable cavities,” Appl. Opt. 34, 2659–2664 (1995).
  9. A. Bianchi, A. Ferrario, P. G. Gobbi, C. Malvicini, and G. C. Reali, “Characterization of a modified SFUR Nd:YAG oscillator in various pulsed regimes,” in 1986 European Conference on Optics, Optical Systems and Applications, S. Sotini and S. Trigari, eds., Proc. SPIE 701, 132–135 (1986).
  10. P. Di Lazzaro, T. Hermsen, and C. E. Zheng, “A generalization of the self-filtering unstable resonator,” IEEE J. Quantum Electron. QE-24, 1543–1547 (1988).
  11. J. W. Chen, V. Nassisi, and M. R. Perrone, “High brightness operation of a XeCl laser with negative branch unstable resonators,” Opt. Quantum Electron. 23, 35–44 (1991).
  12. C. Petrucci, “Caratterizzazione sperimentale e numerica di un laser a XeCl operante con un risonatore instabile autofiltrante generalizzato,” thesis in Physics (University La Sapienza, Rome, Italy, 1993–94).
  13. S. Bollanti, P. Di Lazzaro, F. Flora, G. Giordano, T. Letardi, C. Petrucci, G. Schina, and C. E. Zheng, “Compact three electrodes excimer laser IANUS for a POPA optical system,” in High-Power Gas and Solid State Lasers, D. Schuoecker, T. Letardi, M. Bohrer and H. Weber, eds., Proc. SPIE 2206, 144–153 (1994).
  14. S. Bollanti, P. Di Lazzaro, F. Flora, T. Letardi, D. Murra, C. Petrucci, and O. Uteza, “Study of a compact three-electrode oscillator–amplifier excimer laser system,” Opt. Commun. 132, 565–573 (1996).
  15. E. A. Sziklas and A. E. Siegman, “Mode calculations in unstable resonators with flowing saturable gain. 2: Fast Fourier transform method,” Appl. Opt. 14, 1874–1889 (1975).
  16. W. W. Rigrod, “Homogeneously broadened CW lasers with uniform distributed loss,” IEEE J. Quantum Electron. QE-14, 377–381 (1978).
  17. M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1980).
  18. F. Flora, M. Portaccio, and A. Torre, “Diffraction numerical simulation of a high-power excimer laser performance,” in 9th International Symposium on Gas Flow and Chemical Lasers, C. Fotakis, C. Kalpouzos, and T. G. Papazoglou, eds., Proc. SPIE 1810, 422–425 (1992).
  19. A. E. Siegman, “Performance limitations of the self-filtering unstable resonator,” Opt. Commun. 88, 295–297 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited