OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 12 — Apr. 20, 1997
  • pp: 2568–2585

Ground-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere

Michael H. Proffitt and Andrew O. Langford  »View Author Affiliations


Applied Optics, Vol. 36, Issue 12, pp. 2568-2585 (1997)
http://dx.doi.org/10.1364/AO.36.002568


View Full Text Article

Enhanced HTML    Acrobat PDF (532 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The National Oceanic and Atmospheric Administration Aeronomy Laboratory’s rapid tunable daylight differential absorption lidar system for monitoring ozone throughout the free troposphere is described. The system components are optimized to provide continuously and rapidly profiles of ozone, day or night, with a vertical resolution of 1 km and an absolute accuracy of ±10% to the tropopause under clear sky conditions. Routine observations of ozone with frequent error assessments are made by scanning wavelengths between 286 and 292 nm.

© 1997 Optical Society of America

History
Original Manuscript: June 7, 1996
Revised Manuscript: October 7, 1996
Published: April 20, 1997

Citation
Michael H. Proffitt and Andrew O. Langford, "Ground-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere," Appl. Opt. 36, 2568-2585 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-12-2568


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W.-C. Wang, Y.-C. Zhuang, R. D. Bojkov, “Climate implications of observed changes in ozone vertical distributions at middle and high latitudes of the Northern Hemisphere,” Geophys. Res. Lett. 20, 1567–1570 (1993). [CrossRef]
  2. P. J. Crutzen, “Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air,” Tellus 26, 47–57 (1974). [CrossRef]
  3. L. Skarby, G. Sellden, “The effects of ozone on crops and forests,” Ambio 13, 68–72 (1984).
  4. W. L. Chameides, P. S. Kasibhatla, Y. Yienger, H. Levy, “Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production,” Science 264, 74–77 (1994). [CrossRef] [PubMed]
  5. M. Lippmann, “Health effects of ozone: a critical review,” J. Air Waste Mange. Assoc. 39, 672–695 (1989).
  6. World Meteorological Organization, Scientific Assessment of Ozone Depletion: 1994 (World Meteorological Organization Global Ozone Research and Monitoring Project, Geneva, 1995).
  7. R. Stolarski, R. Bojkov, L. Bishop, C. Zerefos, J. Staehlin, J. Zawodny, “Measured trends in stratospheric ozone,” Science 256, 342–349 (1992). [CrossRef] [PubMed]
  8. W. D. Komhyr, “Electrochemical concentration cells for gas analysis,” Ann. Geophys. 25, 203–210 (1969).
  9. M. H. Proffitt, R. J. McLaughlin, “A fast-response dual-beam UV-absorption ozone photometer suitable for use on stratospheric balloons,” Rev. Sci. Instrum. 54, 1719–1728 (1983). [CrossRef]
  10. E. Hilsenrath, W. Attmannspacher, A. Bass, W. Evans, R. Hagemeyer, R. A. Barnes, W. Komhyr, K. Mauersberger, J. Mentall, M. Proffitt, D. Robbins, S. Taylor, A. Torres, E. Weinstock, “Results from the balloon ozone intercomparison campaign (BOIC),” J. Geophys. Res. 91, 13137–13152 (1986). [CrossRef]
  11. M. Beekmann, G. Ancellet, D. Martin, C. Abonnel, G. Duverneuil, F. Eideliman, P. Bessemoulin, N. Fritz, E. Gizard, “Intercomparison of tropospheric ozone profiles obtained by electrochemical sondes, a ground based lidar and an airborne UV-photometer,” Atmos. Environ. 29, 1027–1042 (1995). [CrossRef]
  12. J. Fishman, S. Solomon, P. J. Crutzen, “Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone,” Tellus 31, 432–446 (1979). [CrossRef]
  13. J. A. Logan, “Trends in the vertical distribution of ozone: an analysis of ozonesonde data,” J. Geophys. Res. 99, 25553–25585 (1994). [CrossRef]
  14. E. F. Danielsen, “Stratosphere-tropospheric exchange based upon radioactivity, ozone, and potential vorticity,” J. Atmos. Sci. 25, 502–518 (1968). [CrossRef]
  15. H. De Backer, E. P. Visser, D. De Muer, D. P. J. Swart, “Potential for meteorological bias in ozone data sets resulting from the restricted frequency of measurement due to cloud cover,” J. Geophys. Res. 99, 1395–1401 (1994). [CrossRef]
  16. G. C. Grabbe, J. Bösenberg, H. Dier, U. Görsdorf, V. Matthias, G. Peters, T. Schaberl, C. Senff, “Intercomparison of ozone measurements between lidar and ECC-sondes,” Contrib. Atmos. Phys. 69, 189–203 (1991).
  17. J. Bösenberg, G. Ancellet, A. Apituley, H. Bergwerff, G. v. Cossart, H. Edner, J. Fiedler, B. Galle, C. de Jonge, J. Mellqvist, V. Mitev, T. Schaberl, G. Sonnemann, J. Spakman, D. Swart, E. Wallinger, Tropospheric Ozone Lidar Intercomparison Experiment, TROLIX ’91, (Max-Planck-Institut fuer Meteorologie, Hamburg, Germany, 1993).
  18. Y. Zhao, R. M. Hardesty, J. E. Gaynor, Demonstration of a New and Innovative Ozone Lidar’s Capability to Measure Vertical Profiles of Ozone Concentration and Aerosol in the Lower Troposphere (California Air Resources Board, Sacramento, Calif., 1994).
  19. E. V. Browell, A. F. Carter, S. T. Shipley, R. J. Allen, C. F. Butler, M. N. Mayo, J. H. Siviter, W. M. Hall, “NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles,” Appl. Opt. 22, 522–534 (1983). [CrossRef] [PubMed]
  20. O. Uchino, M. Tokunaga, M. Maeda, Y. Miyazoe, “Differential-absorption-lidar measurement of tropospheric ozone with an excimer-Raman hybrid laser,” Opt. Lett. 8, 347–349 (1983). [CrossRef] [PubMed]
  21. G. J. Mégie, G. Ancellet, J. Pelon, “Lidar measurements of ozone vertical profiles,” Appl. Opt. 24, 3454–3463 (1985). [CrossRef] [PubMed]
  22. J. A. Sunnesson, A. Apituley, D. P. J. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994). [CrossRef]
  23. U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3163 (1994). [CrossRef]
  24. J. Pelon, S. Godin, G. Mégie, “Upper stratospheric (30–50 km) lidar observations of the ozone vertical distribution,” J. Geophys. Res. 91, 8667–8671 (1986). [CrossRef]
  25. I. S. McDermid, S. M. Godin, T. D. Walsh, “Lidar measurements of stratospheric ozone and intercomparisons and validation,” Appl. Opt. 29, 4914–4923 (1990). [CrossRef] [PubMed]
  26. E. V. Browell, C. F. Butler, S. Ismail, M. A. Fenn, S. A. Kooi, A. F. Carter, A. F. Tuck, O. B. Toon, M. H. Proffitt, M. Lowenstein, M. R. Schoeberl, I. Isakesen, G. Braathen, “Airborne lidar observations in the wintertime Arctic stratosphere: ozone,” Geophys. Res. Lett. 17, 325–328 (1990). [CrossRef]
  27. A. I. Carswell, A. Ulitsky, D. I. Wardle, “Lidar measurements of the Arctic stratosphere,” Proc. IEEE 2049, 9–23 (1993).
  28. T. J. McGee, M. Gross, U. N. Singh, J. J. Butler, “An improved stratospheric ozone lidar,” Opt. Eng. 34, 1421–1430 (1995). [CrossRef]
  29. R. M. Schotland, “The determination of the vertical profile of atmospheric gases by means of a ground based optical radar,” in Proceedings, Third Symposium on Remote Sensing of the Atmosphere (University of Michigan, Ann Arbor, Michigan, 1964), pp. 215–224.
  30. R. M. Schotland, “Some observations of the vertical profile of water vapor by a laser optical radar,” in Proceedings, Fourth Symposium on Remote Sensing of the Atmosphere (University of Michigan, Ann Arbor, Michigan, 1966), pp. 273–277.
  31. R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974). [CrossRef]
  32. R. L. Byer, M. Garbuny, “Pollutant detection by absorption using Mie scattering and topographic targets as reflectors,” Appl. Opt. 12, 1496–1505 (1973). [CrossRef] [PubMed]
  33. G. Mégie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980). [CrossRef] [PubMed]
  34. J. Pelon, G. Mégie, “Ozone monitoring in the troposphere and lower stratosphere: evaluation and operation of a ground-based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982). [CrossRef]
  35. A. M. Bass, R. J. Paur, “Ultraviolet absorption cross-sections of ozone: measurements, results, and analysis,” in Proceedings, Quadrienniel Ozone Symposium (Reidel, Halkidiki, Greece, 1984), pp. 606–610.
  36. W. B. Grant, E. V. Browell, N. S. Higdon, S. Ismail, “Raman shifting of KrF laser radiation for tropospheric ozone measurements,” Appl. Opt. 30, 2628–2633 (1991). [CrossRef] [PubMed]
  37. A. Papayannis, G. Ancellet, J. Pelon, G. Mégie, “Multiwavelength lidar for ozone measurements in the troposphere and lower stratosphere,” Appl. Opt. 29, 467–476 (1990). [CrossRef] [PubMed]
  38. W. S. Herring, T. R. Borden, Mean Distributions of Ozone Density Over North America, 1963–1964 (U.S. Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Bedford, Mass., 1965).
  39. A. J. Krueger, R. A. Minzner, “A mid-latitude ozone model for the 1976 standard atmosphere,” J. Geophys. Res. 81, 4477–4481 (1976). [CrossRef]
  40. R. L. McKenzie, P. V. Johnston, M. Kotkamp, A. Bittar, J. D. Hamlin, “Solar ultraviolet spectroradiometry in New Zealand: instrumentation and spectral irradiance measurements,” Appl. Opt. 31, 6501–6509 (1992). [CrossRef] [PubMed]
  41. L. Eltermann, UV, Visible, and IR Attenuation for Attitudes to 50 km (Air Force Cambridge Research Laboratories, Bedford, Mass., 1968).
  42. E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985). [CrossRef] [PubMed]
  43. J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979). [CrossRef] [PubMed]
  44. R. E. W. Pettifer, “Signal induced noise in lidar experiments,” J. Atmos. Terr. Phys. 37, 669–673 (1975). [CrossRef]
  45. M. P. Bristow, D. H. Bundy, A. G. Wright, “Signal linearity, gain stability, and gating in photomultipliers: application to differential absorption lidars,” Appl. Opt. 34, 4437–4452 (1995). [CrossRef] [PubMed]
  46. H. S. Lee, G. K. Schwemmer, C. L. Korb, M. Dombrowski, C. Prasad, “Gated photomultiplier response characterization for DIAL measurements,” Appl. Opt. 29, 3303–3315 (1990). [CrossRef] [PubMed]
  47. D. H. Sheingold, Analog-Digital Conversion Handbook (Prentice Hall, Englewood Cliffs, N.J., 1986), pp. 426–427.
  48. A. O. Langford, “Identification and correction of analog-to-digital converter nonlinearities and their implications for DIAL measurements,” Appl. Opt. 34, 8330–8340 (1995). [CrossRef] [PubMed]
  49. National Oceanic and Atmospheric Administration, U.S. Standard Atmosphere, 1976 (U.S. Government Printing Office, Washington, D.C., 1976).
  50. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).
  51. P. J. Maroulis, A. L. Torres, A. B. Goldberg, A. R. Bandy, “Atmospheric SO2 measurements on Project Gametag,” J. Geophys. Res. 85, 7345–7349 (1980). [CrossRef]
  52. P. Warneck, Chemistry of the Natural Atmosphere (Academic Press, San Diego, 1988), pp. 1–753.
  53. C. Weitkamp, O. Thomsen, P. Bisling, “Signal and reference wavelengths for the elimination of SO2 cross sensitivity in remote measurements of tropospheric ozone with lidar,” Laser Optoelektronik 24, 42–47 (1992).
  54. A. M. Bass, L. C. Glasgow, C. Miller, J. P. Jesson, D. L. Filkin, “Temperature dependent absorption cross sections for formaldehyde (CH2O): the effect of formaldehyde on stratospheric chlorine chemistry,” Planet. Space Sci. 28, 675–679 (1980). [CrossRef]
  55. D. C. Lowe, U. Schmidt, D. H. Ehalt, “A new technique for measuring tropospheric formaldehyde (CH2O),” Geophys. Res. Lett. 7, 825–828 (1980). [CrossRef]
  56. A. M. Bass, A. E. Ledford, A. H. Laufer, “Extinction coefficients of NO2 and N2O4,” J. Res. Natl. Bur. Stand. Sect. A 80, 143–166 (1976). [CrossRef]
  57. D. Kley, J. W. Drummond, M. McFarland, S. C. Liu, “Tropospheric profiles of NOx,” J. Geophys. Res. 86, 3153–3161 (1981). [CrossRef]
  58. J. B. Burkholder, R. K. Talukdar, A. R. Ravishankara, S. Solomon, “Temperature dependence of the HNO3 UV absorption cross sections,” J. Geophys. Res. 98, 22937–22948 (1993). [CrossRef]
  59. B. J. Huebert, A. L. Lazrus, “Tropospheric gas-phases and particulate nitrate measurements,” J. Geophys. Res. 85, 7322–7328 (1980). [CrossRef]
  60. Shardanand, “Absorption cross sections of O2 and O4 between 2000 and 2800 Å,” Phys. Rev. 186, 5–9 (1969). [CrossRef]
  61. M. W. P. Cann, J. B. Shin, R. W. Nicholls, “Oxygen absorption in the spectral range 180–300 nm for temperatures to 3000K and pressures to 50 atm,” Can. J. Phys. 62, 1738–1751 (1984). [CrossRef]
  62. V. V. Zuev, A. A. Mitsel, I. V. Ptashnik, “Effect of variations in the atmospheric optical properties on the accuracy of lower-tropospheric ozone soundings in the UV,” Atmos. Oceanic Opt. 5, 675–680 (1992).
  63. S. F. Luk’yanenko, T. I. Novakovkaya, I. N. Potapkin, “Investigation of absorption by water vapor in the region 265 … 350 nm with the help of a spectrophotometer based on the KSVU-12M spectroscopic system,” Atmos. Opt. 3, 1080–1082 (1990).
  64. B. A. Thompson, P. Harteck, R. R. Reeves, “Ultraviolet absorption coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2, and CH4 between 1850 and 4000 Å,” J. Geophys. Res. 68, 6431–6436 (1963). [CrossRef]
  65. A. G. Hearn, “The absorption of ozone in the ultraviolet and visible regions of the spectrum,” Proc. Phys. Soc. London 78, 932–940 (1961). [CrossRef]
  66. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1984), Chap. 7, p. 243–245.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited