OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 13 — May. 1, 1997
  • pp: 2813–2817

Static Fourier-transform ultraviolet spectrometer for gas detection

J. Courtial, B. A. Patterson, W. Hirst, A. R. Harvey, A. J. Duncan, W. Sibbett, and M. J. Padgett  »View Author Affiliations

Applied Optics, Vol. 36, Issue 13, pp. 2813-2817 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (243 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the design, construction, and evaluation of a static Fourier-transform ultraviolet spectrometer. The spectrometer is based on Wollaston prisms that form an interferogram in the spatial domain, which is recorded with a detector array. We demonstrate the application of the spectrometer to gas detection. Using a deuterium light source, we measured a detection limit, with a 1-s integration time, for hydrogen sulfide and sulfur dioxide, corresponding to 0.2 ppm over a 5-m path length.

© 1997 Optical Society of America

Original Manuscript: July 8, 1996
Revised Manuscript: October 3, 1996
Published: May 1, 1997

J. Courtial, B. A. Patterson, W. Hirst, A. R. Harvey, A. J. Duncan, W. Sibbett, and M. J. Padgett, "Static Fourier-transform ultraviolet spectrometer for gas detection," Appl. Opt. 36, 2813-2817 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Reid, S. Gillespie, “Open Path Detection of Hydrogen Sulphide,” presented at the International Symposium on Optical Remote Sensing for Environmental Monitoring, Atlanta, Ga., 1993.
  2. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 2, p. 22.
  3. G. W. Stroke, A. T. Funkhouser, “Fourier Transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965). [CrossRef]
  4. L. V. Egorova, I. E. Leshcheva, B. N. Popov, A. Yu. Stroganova, “Static fast-response Fourier transform spectrometer having a linear CCD image-formation system,” Sov. J. Opt. Technol. 56, 220–221 (1989).
  5. M. Françon, S. Mallick, Polarization Interferometers (Wiley Interscience, London, 1971), Chap. 2, p. 31.
  6. T. Okamoto, S. Kawata, S. Minami, “A photodiode array Fourier transform spectrometer based on a birefringent interferometer,” Appl. Spectrosc. 40, 691–695 (1986). [CrossRef]
  7. M. J. Padgett, A. R. Harvey, A. J. Duncan, W. Sibbett, “Single-pulse, Fourier-transform spectrometer having no moving parts,” Appl. Opt. 33, 6035–6040 (1994). [CrossRef] [PubMed]
  8. M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995). [CrossRef]
  9. B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996). [CrossRef]
  10. Manufactured by Halbo Optics, Chelmsford, UK.
  11. Part RL1024SBQ-011, EG&G Reticon, Sunnyvale, Calif.
  12. Ref. 5, Chap. 2, p. 26.
  13. H. Koetser, Halbo Optics, Chelmsford, UK (personal communication, 1995).
  14. K. Watanabe, A. S. Jursa, “Absorption and Photoionization Cross Sections of H2O and H2S,” J. Chem. Phys. 41, 1650–1653 (1964). [CrossRef]
  15. D. Golomb, K. Watanabe, F. F. Marmo, “Absorption coefficients of sulphur dioxide in the vacuum ultraviolet,” J. Chem. Phys. 36, 958–960 (1962). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited