OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 13 — May. 1, 1997
  • pp: 2818–2824

Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham  »View Author Affiliations

Applied Optics, Vol. 36, Issue 13, pp. 2818-2824 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have used spectral reflectance and transmittance measurements combined with Kramers–Krönig analyses to obtain the real (n) and imaginary (k) parts of the complex refractive index, N = n + ik, of Bacillus subtilis spores over a wavelength interval from 0.2 to 2.5 µm. Samples were in the form of thin solid films, pressed pellets, and suspensions in water and glycerol. The optical constants of spores suspended in water were found to differ from those of spores suspended in glycerol. In addition, spores previously exposed to water in earlier experiments and subsequently dried exhibited different optical constants from spores that had not been exposed to water.

© 1997 Optical Society of America

Original Manuscript: March 21, 1996
Revised Manuscript: October 21, 1996
Published: May 1, 1997

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, "Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm," Appl. Opt. 36, 2818-2824 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. C. Hill, R. G. Pinnick, P. Nachman, G. Chen, R. K. Chang, M. W. Mayo, G. L. Fernandez, “Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles,” Appl. Opt. 34, 7149–7155 (1995). [CrossRef] [PubMed]
  2. P. Nachman, G. Chen, R. G. Pinnick, S. C. Hill, R. K. Chang, M. W. Mayo, G. L. Fernandez, “Conditional-sampling spectrograph detection system for fluorescence measurements of individual airborne biological particles,” Appl. Opt. 35, 1069–1076 (1996). [CrossRef] [PubMed]
  3. R. A. Dalterio, W. H. Nelson, D. Britt, J. Sperry, D. Psaras, J. F. Tanguay, S. L. Suib, “Steady-state and decay characteristics of protein tryptophan fluorescence from bacteria,” Appl. Spectrosc. 40, 86–90 (1986). [CrossRef]
  4. R. A. Dalterio, W. H. Nelson, D. Britt, J. F. Sperry, J. F. Tanguay, S. L. Suib, “The steady-state and decay characteristics of primary fluorescence from live bacteria,” Appl. Spectrosc. 41, 234–241 (1987). [CrossRef]
  5. B. V. Bronk, L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436–440 (1993). [CrossRef]
  6. P. J. Wyatt, “Differential light scattering: a physical method for identifying living bacterial cells,” Appl. Opt. 7, 1879–1896 (1968). [CrossRef] [PubMed]
  7. A. L. Koch, “Theory of the angular dependence of light scattered by bacteria and similar-sized biological objects,” J. Theor. Biol. 18, 133–156 (1968). [CrossRef] [PubMed]
  8. C. Waltham, J. Boyle, B. Ramey, J. Smit, “Light scattering and absorption caused by bacterial activity in water,” Appl. Opt. 33, 7536–7540 (1994). [CrossRef] [PubMed]
  9. S. Yabushita, K. Wada, T. Inagaki, T. Ito, “Photometric and photoacoustic measurement of the absorbance of micro-organisms and its relation to the micro-organism-grain hypothesis,” Astrophys. Space Sci. 117, 401–406 (1985). [CrossRef]
  10. S. Yabushita, K. Wada, T. Takai, T. Inagaki, D. Young, E. T. Arakawa, “A spectroscopic study of the micro-organism model of interstellar grains,” Astrophys. Space Sci. 124, 377–388 (1986). [CrossRef]
  11. A. D. Russell, The Destruction of Bacterial Spores (Academic, London, 1982), p. 285.
  12. F. Stern, “Elementary theory of the optical properties of solids,” in Solid State Physics, Vol. 15, F. Seitz, D. Turnbull, eds. (Academic, New York, 1963), pp. 299–408.
  13. B. N. Khare, C. Sagan, E. T. Arakawa, F. Suits, T. A. Callcott, M. W. Williams, “Optical constants of organic tholins produced in a simulated titanian atmosphere: from soft x-ray to microwave frequencies,” Icarus 60, 127–137 (1984). [CrossRef]
  14. C. Sagan, W. R. Thompson, B. N. Khare, “Titan: a laboratory for prebiological organic chemistry,” Acc. Chem. Res. 25, 286–292 (1992). [CrossRef] [PubMed]
  15. M. W. Williams, E. T. Arakawa, T. Inagaki, “Optical and dielectric properties of materials relevant to biological research,” in Handbook on Synchrotron Radiation, Vol. 4, S. Ebashi, M. Koch, E. Rubenstein, eds. (Elsevier, Amsterdam, 1991), pp. 95–145.
  16. L. R. Painter, R. D. Birkhoff, E. T. Arakawa, “Optical measurements of liquid water in the vacuum ultraviolet,” J. Chem. Phys. 51, 243–251 (1969). [CrossRef]
  17. T. Inagaki, R. N. Hamm, E. T. Arakawa, L. R. Painter, “Optical and dielectric properties of DNA in the extreme ultraviolet,” J. Chem. Phys. 61, 4246–4250 (1974). [CrossRef]
  18. C. F. Robinow, “Morphology of bacterial spores, their development and germination,” in The Bacteria, A Treatise on Structure and Function, Vol. 1, I. C. Gunsalus, R. Y. Stannier, eds. (Academic, New York, 1960), pp. 207–248.
  19. K. F. A. Ross, E. Billing, “The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurements,” J. Gen. Microbiol. 16, 418–425 (1957). [CrossRef] [PubMed]
  20. F. Hoyle, N. C. Wickramasinghe, “On the nature of the interstellar grains,” Q. J. R. Astron. Soc. 27, 21–37 (1986).
  21. T. Inagaki, Y. Yamamoto, S. Yabushita, “The ultraviolet extinction by hollow spherical particles of graphite,” Astrophys. Space Sci. 182, 75–80 (1991). [CrossRef]
  22. W. A. de Heer, D. Ugarte, “Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5-nm interstellar absorption feature,” Chem. Phys. Lett. 207, 480–486 (1993). [CrossRef]
  23. T. Inagaki, S. Yabushita, K. Wada, E. T. Arakawa, “The ultraviolet spectra of thin evaporated films of carbonaceous chondrite,” Astrophys. Space Sci. 206, 111–117 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited