OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 13 — May. 1, 1997
  • pp: 2856–2868

Comparison of curvature-based and Shack–Hartmann-based adaptive optics for the Gemini telescope

Françcois Rigaut, Brent L. Ellerbroek, and Malcolm J. Northcott  »View Author Affiliations

Applied Optics, Vol. 36, Issue 13, pp. 2856-2868 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (334 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the results of independent numerical simulations of adaptive optics systems for 8-m astronomical telescopes that use both Shack–Hartmann and wave-front curvature sensors. Four differents codes provided consistency checks and redundancy. All four simulate a complete system and model noise and servo-lag effects. A common atmospheric turbulence generator was used for consistency. We present the main characteristics of the codes, and we report the system performance in term of Strehl ratio and full width at half-maximum versus the magnitude of the (on-axis) guide star. We show that a Shack–Hartmann plus stacked actuator mirror system with 10 × 10 subapertures or a curvature plus bimorph mirror system with 56 subapertures yields a 50% Strehl ratio at 1.6 µm for a m R = 14.7 magnitude star, with almost equivalent performance at both brighter and dimmer light levels.

© 1997 Optical Society of America

Original Manuscript: July 25, 1995
Revised Manuscript: September 23, 1996
Published: May 1, 1997

Françcois Rigaut, Brent L. Ellerbroek, and Malcolm J. Northcott, "Comparison of curvature-based and Shack–Hartmann-based adaptive optics for the Gemini telescope," Appl. Opt. 36, 2856-2868 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Roddier, C. Roddier, N. Roddier, “Curvature sensing: a new wavefront sensing method,” in Statistical Optics, G. M. Morris, ed., Proc. SPIE976, 203–209 (1988). [CrossRef]
  2. G. Rousset, “Wavefront sensing,” in Proceedings of the NATO Advanced Study Institute on Adaptive Optics for Astronomy, D. M. Alloin, J.-M. Mariotti, eds. (Cargèse, France, 1993), pp. 115–138.
  3. R. Racine, S. Salmon, D. Cowley, J. Sovka, “Mirror, dome and natural seeing at CFHT,” Publ. Astron. Soc. Pac. 103, 1020–1032 (1991). [CrossRef]
  4. M. J. Northcott, “The university of Hawaii adaptive optics system. II. Computer simulation,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE1542, 254–261 (1991). [CrossRef]
  5. F. Roddier, J. Anuskiewicz, J. E. Graves, M. J. Northcott, C. Roddier, “Adaptive optics at the university of Hawaii I: current performance at the telescope,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 2–9 (1994). [CrossRef]
  6. F. Rigaut, R. Arsenault, J. Kerr, D. Salmon, M. J. Northcott, Y. Dutil, C. Boyer, “The Canada-France-Hawaii adaptive optics bonnette II: simulations and control,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 149–160 (1994). [CrossRef]
  7. B. L. Ellerbroek, “First-order performance evaluation of adaptive optics systems for atmospheric-turbulence compensation in extended field-of-view astronomical telescopes,” J. Opt. Soc. Am. A 11, 783–805 (1994). [CrossRef]
  8. E. Gendron, P. Léna, “Astronomical adaptive optics I. Modal control optimization,” Astron. Astrophys. 291, 337–347 (1994).
  9. B. L. Ellerbroek, C. Van loan, N. P. Pitsianis, R. J. Plemmons, “Optimizing closed-loop adaptive optics performance with use of multiple control bandwidths,” J. Opt. Soc. Am. A 11, 2871–2886 (1994). [CrossRef]
  10. G. M. Cochran, “Phase screening generation,” (Optical Science Company, Anaheim, Calif., 1985).
  11. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  12. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27, 1223–1225 (1988). [CrossRef] [PubMed]
  13. F. Roddier, “Error propagation in a closed-loop adaptive optics system: a comparison between Shack-Hartmann and curvature wave-front sensors,” Opt. Commun. 113, 357–359 (1995). [CrossRef]
  14. D. L. Fried, “Least-square fitting of a wavefront distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67, 370–375 (1977). [CrossRef]
  15. F. Roddier, “The effect of atmospheric turbulence in optical astronomy,” in Progress in Optics XIX, E. Wolf, ed. (Pergamon, New York, 1981), p. 281. [CrossRef]
  16. L. Goad, “Digital image centering,” in Instrumentation in Astronomy VI, D. L. Crawford, ed., Proc. SPIE627, 688–692 (1986). [CrossRef]
  17. B. L. Ellerbroek, “Adaptive optics performance analysis for the Gemini 8-m telescope project,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 421–437 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited